
UNIVERSITY OF SCIENCE

FACULTY OF INFORMATION TECHNOLOGY

ADVANCED PROGRAM IN COMPUTER SCIENCE

NGUYỄN HIỀN TUẤN DUY - NGUYỄN TRƯƠNG VĨNH THUYÊN

TOWARDS A GRATIFYING INTERACTIVE

MODALITY FOR SMART ENVIRONMENTS

BASED ON UBIQUITOUS SENSING

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

HO CHI MINH CITY, 2021

UNIVERSITY OF SCIENCE

FACULTY OF INFORMATION TECHNOLOGY

ADVANCED PROGRAM IN COMPUTER SCIENCE

NGUYỄN HIỀN TUẤN DUY - 1751001

NGUYỄN TRƯƠNG VĨNH THUYÊN -1751042

TOWARDS A GRATIFYING INTERACTIVE
MODALITY FOR SMART ENVIRONMENTS

BASED ON UBIQUITOUS SENSING

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

THESIS ADVISOR:

ASSOC. PROF. TRẦN MINH TRIẾT

ACADEMIC YEAR 2017-2021

ACKNOWLEDGEMENT

Foremost, we want to deeply thank our advisor – Assoc. Prof. Tran Minh Triet.

You are a continual source of wisdom and advice to us. It has been a privilege of

working along side you and being given the freedom to explore our own direction.

We are deeply grateful for your tremendous supports, both intellectually and

emotionally, and all of the inspiration you have been giving us since the day we

started and throughout our university life.

We would also like to thank our thesis reviewer, Dr. Nguyen Thi Minh Tuyen,

not only for being very patient and supportive towards our thesis progress but

also for your kind and thoughtful feedback.

We express our gratitude to our thesis committee for the insightful and encour-

aging feedback – Prof. Duong Nguyen Vu, Assoc. Prof. Vu Hai Quan, and Dr.

Tran Thai Son.

We would also like to express our gratitude to the faculties and teaching assis-

tants of the Advanced Program in Computer Science (APCS) and the Faculty of

Information Technologies (FIT), especially Prof. Nguyen Huu Anh, Assoc. Prof.

Dinh Dien, Assoc. Prof. Dinh Ngoc Thanh, Dr. Dinh Ba Tien, Dr. Nguyen Van

Vu, Dr. Nguyen Ngoc Thao, Dr. Nguyen Phuc Son, Dr. Nguyen Tuan Nam, Dr.

Nguyen Vinh Tiep, Nguyen Huu Tri Nhat MSc., Tran Anh Duy MSc., and Ho

Tuan Thanh MSc. We are indebted to your brilliant and engaging teaching, and

your unwavering support throughout our university life.

To senior members of SELab – Nguyen Hai Dang, MSc., Nguyen Thanh An,

MSc., Tran Quang Tanh, MSc., Do Trong Le, Tran Ngoc Dat Thanh, Hoang

Trung Hieu, Tran Mai Khiem, Huynh Viet Tham, Vu Le The Anh; and senior

members of Robotics and IoT lab – Cao Xuan Nam, MSc. and Dang Hoai

ii

Thuong, we are indebted to all the supports and guidance you have given us.

Thank you for sharing with us all the wonderful moments at the labs.

To our peers – Nguyen Ho Huu Nghia, Dao Hieu, Nguyen Quang Thuc, Nguyen

Ngoc Minh Huy, Tran Gia Huan, Do Tri Nhan, Nguyen Minh Tri, Nguyen Diep

Xuan Quang, Tran Bao Phuc, Vo Trung Thanh, Tran Thi Anh Thu, Nguyen

Thi Kim Phuong, Nguyen Hoang Tan, Nguyen Phuc Minh, Le Tan Dang Tam,

Truong Tuc Luan, Nguyen Van Quang Tien, Trinh Huu Duc, Tran Trieu Thanh,

Huynh Thanh Vy, Do Nhat Huy, Nguyen Le Nguyen, Tran Cong Hoang Trong,

Tran Duc Huy, Vo Kien, Doan Ngoc Anh Khoa, Dinh Nguyen Hoang Kim,

Nguyen Hoang Thanh Tuan; our juniors – Pham Bang Dang, Nguyen Ho Thang

Long, Duong Anh Kiet, Le Thanh Danh, Huynh Tuan Luc, Trinh Van Minh,

Nguyen Phu Van, Ho Thi Ngoc Phuong, Nguyen Ngoc Bang Tam, Vo Tien Dung;

and the whole APCS class of 2017-2021. You are an important part to this life

chapter of us and a huge source of inspiration. We are grateful and adore the

hard work and discussion we had together during the course of 4 years. Thank

you for sharing with us all of the moments.

We thank Nguyen Minh Tuan and Shad Roi from Google, and Ms. Hoang Thanh

Tu of the APCS for helping us establishing the Google Developer Student Club

at Ho Chi Minh City University of Science (GDSC-HCMUS), which has been an

important experience during our time at the university. We thank the members

of GDSC-HCMUS for sharing the experience with us, you are both our hope

and inspiration in building a meaningful and lasting alumni network.

Tuan Duy dedicates this thesis for his parents – ba Tuan and me Thao, his

guide parents – bac Thanh and bac Yen, and his brother Bao Duy. He is forever

grateful for their cares, sacrifices, and tender love through everything, and for

being his lifelong inspiration. Tuan Duy would also like to express deep gratitude

towards Prof. Park Chan-ik, his advisor during the time he exchanged at Pohang

iii

University of Science and Technology (POSTECH, South Korea) for the supports

and cultivation he has given Tuan Duy, which has encouraged him greatly to

pursue the path of becoming a good researcher. Tuan Duy is forever indebted

with the trust and favors Prof. Park has given him, especially the chance of

attending POSTECH and the chance to start have his first attempts in true

scientific research at SSLab. Tuan Duy would also like to thank his industry

advisors, Assistant Prof. Vo Duy Tin (Lakehead University, Ontario, Canada)

and Luong Tien Manh, MSc., for their patience and mentorship during Tuan

Duy’s time at VinAI Research, introducing him to many interesting research in

speech signal processing and engineering practices that have taken an influence in

this thesis. Tuan Duy also thanks Prof. Karl Aberer and Duong Chi Thang, MSc.

for their endeavor during his internship with the École polytechnique fédérale de

Lausanne (EPFL, Switzerland), which has helped widen his knowledge horizon

and developed crucial principles in doing research and engineering. Tuan Duy

thanks all of his friends, including members of the Pathfinder social startup – Le

Duy Luat, Nguyen Ho Huu Nghia, Banh Thanh Son, Dao Hieu, Lai Phan Quynh

Anh, and Do Nguyen Phuong Quynh; ones he met at POSTECH – Dr. Nguyen

The Kha, Dr. Dinh Thi Hong Nhung, Dr. Truong Thi My Nhung, Dr. Hong Minh

Triet, Nguyen Van Tu MSc., Tran Diem Nghi, Tim Bui, Dr. Ma Jeong-hyun,

Dr. Lee Un-sung, Hong Sang-won, MSc., Noh Yong-du, MSc., Chae Byung-hoon,

MSc., Shin Dong-min, MSc., Park Hae-sung, MSc., Jung Woo-chang, MSc., Jo

Yongrae, MSc., Krishna Gopal Rajput, Syed Nurul Hasan, Anoop Gopal Singh,

Tinting Ji, Sara Chaoufi, Clemens Reinhardt, MSc., Mostafa Bestamy, Inha

Lee, Raul Ruiz, Juan Limon, Lorenzo Torres, Marlon Pillasagua Nemer MSc.,

Kim Eun-sik MSc., Larissa Miasiro MSc., Nikita Sterlyus, Kristeen Neuman,

Song Sihao, Kevin Garcia, Ousseynou Fall, Hector Dang-Nhu MSc., Dr. Juval

Tongco, Dr. Tim King, Dr. Jingeol Lee, Ong Wei Hua, and Tan Wei Xuan; and

everyone that is yet to be mentioned here, for going with him through important

iv

chapters of his life and giving him invaluable lessons. Last but not least, Tuan

Duy thanks his girlfriend – Le. He cherishes the fact that they have always been

learning from each other, and have been maturing together for a long time. He

would like to thank Le for complementing him in every ways, and for all the love

and supports.

Vinh Thuyen can’t even explain how much belief and love of his parent means to

him. He is grateful eternally for his mother’s sacrifices; for his dad who has tried

his best to live and to be a good father every single moment for exact 10 years. He

is proud of his two big brothers’ love and support for him. During Thuyen’s high

school time, his homeroom teaches Miss. Phan Lan and his school’s vice president

Nguyen Trung Nhan always encourage him to follow his passion. Moreover, to

meet Miss. Dang Thi Tuong Vy in his eleventh grade is a turning point, she

explored his potential and encouraged him to learn coding and computer science.

Vinh Thuyen values and respects Assoc. Prof. Dinh Dien for his efforts and

commitments in natural language processing in Vietnamese and for the supports

he has given Thuyen, which always encourages him greatly to keep Thuyen’s

passion in research journey. Vinh Thuyen would like to thank Assoc. Prof. Tran

Minh Triet once again for the encouragement, he has provided Thuyen at the

moment Thuyen’s lost which has helped Thuyen to has confidence to get through

tough times. Thuyen is grateful for having a first job being a teaching assistant at

RocketAcademy, he has gathered a lot of knowledge and experience by working

for a startup company; surprisingly, he worked with the founder Kai-Yuan Neo

who is the drummer of his favorite song’s band. Vinh Thuyen would like to

thank Do Nhat Huy, Tran Trieu Thanh, Tran Nguyen Hien, Doan Le Cat Uyen

for our little music band. Thuyen truly appreciates efforts and commitments on

dotosave project with his friends Nguyen Hoang Thanh Tuan, Tran Bao Phuc,

Nguyen Pham Dan Anh, Phan Kim Thai. He also would like to thank ever

familiar faces in 135B Tran Hung Dao dormitory including my roommates Tran

v

Cong Hoang Trong, Pham Huynh Nhat, Tran Bao Khanh, Nguyen Dang Khoa,

Dinh Vu Quynh, Truong Nhat Ninh, Duong Cong Hau, Nguyen Phong Hao,

Pham Toan, Nguyen Nhat Ninh, and dormitory staffs and assistants, especially

chu Loc for taking care of Thuyen and other students live in 135B dormitory for

many years. Vinh Thuyen is so grateful for having a lot of good friends in his

university time, especially APCS friends. Thuyen truly wants to say thank to

an APCS friend who always is a motivation for Thuyen to keep going. Finally,

Thuyen wants to say thank to Kita, Luna, Tuna, Giga, Sola, Xuka and especially

Fugi for being with me.

Finally, we would like to dedicate a special thank to Prof. Duong Nguyen Vu,

who is not only a member of our thesis committee, but also the creator of the

wonderful APCS. You are the father figure and source of inspiration for gener-

ations of students enrolling in the program. None of this would have happened

without you. Your first-day guidance means the world to us. Not only it launched

us to committing good and meaningful engineering and scientific work, but also

introducing us to a positive living attitude of always putting in 100% of effort

in all deeds of life in general.

vi

THESIS SYLLABUS

Thesis title: Towards a Gratifying Interactive Modality for Smart Environ-

ments based on Ubiquitous Sensing

Advisor: Assoc. Prof. Trần Minh Triết

Duration: December 1st, 2020 to July 31th, 2021

Students: Nguyễn Hiền Tuấn Duy (1751001) - Nguyễn Trương Vĩnh Thuyên

(1751042)

Introduction:

The rapid development of telecommunication technology, computing technol-

ogy and wearable technology increases the need of new modality for interaction

between human and these systems.

Many interaction techniques are proposed using either proof-of-concept wear-

able devices devices or off-the-shelf wearable devices. The advantage of building

device prototypes for new interaction techniques is that helps researchers easier

way to implement their ideas by adding necessary components. While, techniques

that are proposed using off-the-shelf devices are limited due to manufacturers’

design. Studies using off-the-shelf devices often for investigating the feasibility

of new applications. An advantage of these studies is that devices are used in

these studies available to buy and easier to use.

Smart watches are the most popular off-the-shelf wearable devices and suitable

for everyday-carry and daily usage. They contains various types of sensors suit-

able for various applications. With the development of technologies that relate to

smart watches such as micro-computing, battery technology, etc., modern smart

watches can yield a gratifying interactive modality.

vii

Content:

This thesis presents a smart watch inertial signal processing method for activ-

ity recognition based on an approach for speech recognition. Following that, we

introduce off-the-shelf Android smart watch enhancement method and signal

transmission method for high frequency signal sequence transmission. Finally,

we propose an interaction scenario that is performing authentication on com-

puter platform using smart watch. In order to demonstrate, we build an multiple

platforms authentication system.

Main tasks:

• Literature Review:

- We gather knowledge from studies on Human-Computer Interaction top-

ics and find our interests.

- We explore user study method and interactive system design from Human-

Computer Interaction studies.

- We focus on gathering knowledge and understanding studies on smart

environments, ubiquitous sensing and wearable technology.

• Feature Enhancement for Smart watch

- We gather knowledge to understand method to enhance Android smart

watch for support higher sensors sign frequency.

- We gather knowledge to understand Android smart watch hardware.

- We perform hardware and firmware interference for devices enhancement.

- We implement application for signal transmission from smart watches to

personal computers.

viii

• Inertial Signal Sequence Understanding

- We explore state-of-the-art methods in smartwatch-based human activity

and gesture recognition.

- We explore state-of-the-art methods in learning-based sequential signal

processing.

- We design human activity and gesture recognizers with design choices

that facilitate deployment and data collection.

- We implement human activity and gesture recognizers.

- We evaluate proposed human activity and gesture recognizers.

• Smart Interaction System With Smart Watch

- We explore usage scenarios for interaction techniques, propose new usage

scenarios if possible.

- We research and understand authentication systems on popular computer

platforms and method to implement authentication modules for these plat-

forms.

- We implement shared component for a smart watch interaction system

for authentication supports multiple platforms.

- We implement locally credential component for following platforms: Win-

dows, Linux, and Web-based.

ix

Results:

We transform existing smart watch to be used as smart input devices. Then,

we propose an activity recognition algorithm using inertial signal sequence in-

spired from speech recognition domain. Finally, we build a flexible authentication

system for multiple platforms authentication using smart watch that system is

customizable, upgradable and able to extend to new platform.

Research timeline

• December 2020 - February 2021: do a research on related topics to gather

knowledge and write literature review.

• February - March 2021:

- Purchase necessary devices and study methods to modify hardware and

firmware of the devices.

- Perform hardware and firmware inference and test the frequency results.

- Implement data transmission application.

- Search for benchmark datasets to perform experience in inertial signal

• March - April 2021:

- Keep performing hardware and firmware inference and test the frequency

results.

- Perform more experience in inertial signal sequence.

- Perform a research for authentication system on popular platform.

x

• April - June 2021:

- Purchase other devices if previous devices can not be overclocked.

- Implement shared component of our authentication system,

- Study method to implement credential providers, authentication modules

on each platform.

- Deploy a demo of activity recognition model.

- Perform more experience in activity recognition model and evaluate using

numerical benchmark.

• June - July 2021:

- Implement custom Windows Credential Providers.

- Implement Google Extension for autologin to support web-based appli-

cation.

- Implement custom PAM module for supporting Linux platforms.

Advisor

Assoc. Prof. Trần Minh Triết

July 14th, 2021

Students

Nguyễn Hiền Tuấn Duy

Nguyễn Trương Vĩnh Thuyên

xi

TABLE OF CONTENTS

Page

Acknowledgement . ii

Thesis Syllabus . vii

Table of Contents . xii

List of Tables . xvii

List of Figures . xviii

Abstract. xx

CHAPTER 1 – INTRODUCTION

1.1 Smart Environments . 1

1.2 Human-Computer Interaction with Ubiquitous Sensing and
Wearable Technology . 4

1.2.1 Ubiquitous Sensing . 6

1.2.2 Wearable Computing. 7

1.3 Motivation . 13

1.4 Objective . 14

1.4.1 Objectives . 14

1.4.2 Tasks . 14

1.4.3 Contributions . 16

1.5 Outline . 16

xii

CHAPTER 2 – FEATURE ENHANCEMENT FOR SMART
ANDROID DEVICES WITH INERTIAL
SENSORS

2.1 Hardware and Firmware Interference . 17

2.1.1 LG G Watch W100. 18

2.1.2 Motorola 360 (2nd generation) . 19

2.1.2.1 Build a kernel . 22

2.1.2.2 Smelt kernel source: M4 sensorhub . 24

2.2 Signal Collecting . 24

2.2.1 Client . 26

2.2.1.1 UDPSender . 26

2.2.1.2 Sensor Event Listener . 28

2.2.2 Server . 29

CHAPTER 3 – INERTIAL SIGNAL SEQUENCE
UNDERSTANDING FOR SMART
INTERACTION

3.1 Signal Processing . 31

3.1.1 Heterogeneities and time-domain vs. frequency domain
features . 32

3.1.2 Discrete Fourier Transform .. 32

3.1.3 Short-time Fourier Transform .. 33

3.2 Learning-based Signal Processing . 34

3.2.1 Foundational Methods . 34

3.2.1.1 Convolutional Neural Network . 34

xiii

3.2.1.2 Separable Convolutional Filters . 36

3.2.1.3 Depthwise Separable Convolutional Layer 37

3.2.1.4 Time-depth and time-channel Separable
Convolutional Layer . 37

3.2.1.5 Connectionist Temporal Classification Loss 39

3.2.2 Compound Methods . 41

3.2.3 QuartzNet - Separable Convolutional Network for Sequential
Signal . 41

3.2.3.1 QuartzNetBxR-1D.. 43

3.2.3.2 QuartzNetBxR-3D.. 43

3.3 Implementation Details . 43

3.3.1 QuartzNet . 44

3.3.1.1 QuartzNetBxR-1D.. 44

3.3.1.2 QuartzNetBxR-3D.. 48

3.4 Numerical Benchmarks . 49

3.4.1 The WISDM-HARB Dataset . 49

3.4.2 Interleaved activity segmentation without overlaps 52

3.4.3 Numerical Evaluation . 53

3.4.3.1 Sequence Error Rate . 53

3.4.3.2 Numerical Results . 53

CHAPTER 4 – SMART INTERACTION PLATFORM WITH
SMART WATCH

4.1 Authentication On Common Computer Platforms . 56

xiv

4.1.1 Windows Credential Providers . 57

4.1.1.1 Architecture . 58

4.1.1.2 Credential Providers Authentication Process 59

4.1.2 Linux Pluggable Authentication Modules . 61

4.1.2.1 Architecture . 62

4.1.2.2 PAM configuration . 63

4.1.2.3 Authentication Process. 67

4.1.3 Web-based Applications Authentication . 68

4.2 Authentication System Design and Implementation. 68

4.2.1 Authentication Techniques . 69

4.2.2 System Design . 70

4.2.3 Module Implementation: Custom Windows Credential
Provider . 72

4.2.3.1 Windows Credential Provider Interfaces
Implementation . 72

4.2.3.2 Authentication Process. 74

4.2.4 Module Implementation: Linux PAM Module 76

4.2.5 Module Implementation: Google Chrome Extension 78

4.2.6 Module Implementation: Authentication server 81

4.2.7 Module Implementation: Database Design. 82

CHAPTER 5 – CONCLUSION

5.1 Main results . 84

xv

5.2 Samples of Usage Scenarios . 85

5.3 Future Work . 86

References . 88

List of Publications . 110

xvi

LIST OF TABLES

Table 1.1 Common wearable devices with locations and applica-
tions

10

Table 3.1 QuartzNet5x3-1D convolution block hyperparameters 48

Table 3.2 WISDM dataset activities 50

Table 3.3 Interleaved segmentation evaluation result 54

Table 3.4 Fixed time-frame segmentation evaluation result 54

xvii

LIST OF FIGURES

Figure 1.1 Health wearable device classification 9

Figure 2.1 Layers of the Android sensor stack 18

Figure 2.2 The first attempt at soldering on the USB connector,
without opening the back.

20

Figure 2.3 Opening the back of the Moto360v2 using a heat gun 21

Figure 2.4 The second attempt at soldering on the USB connector,
with opened back

22

Figure 2.5 Communication and client-side and server-side 25

Figure 2.6 Android socket client application is installed on our
Moto 360 watch

26

Figure 3.1 LeNet-5 – the original CNN reproduced in [1] 34

Figure 3.2 Normal Convolution 36

Figure 3.3 Depthwise Convolution 38

Figure 3.4 Pointwise Convolution 38

Figure 3.5 Time-channel Separable Convolution 39

Figure 3.6 CTC algorithm for speech recognition [2] 39

Figure 3.7 QuartzNet architecture adapted from [3] 42

Figure 4.1 Interactive Login Architecture 58

Figure 4.2 Credentials Processes in Windows Authentication 59

Figure 4.3 Components on a Windows Logon screen 60

Figure 4.4 PAM architecture and core components relationship 62

xviii

Figure 4.5 List of files in pam.d/ folder on the author’s Linux system 65

Figure 4.6 PAM configuration example: Authentication process 67

Figure 4.7 Web-based authentication techniques examples 69

Figure 4.8 Web-based authentication using local devices and email
addresses

70

Figure 4.9 Authentication techniques 71

Figure 4.10 Future work: Authentication techniques 72

Figure 4.11 Authentication system architecture 73

Figure 4.12 Custom Credential Provider class diagram 74

Figure 4.13 Custom Credential Provider process 75

Figure 4.14 Custom PAM module process 77

Figure 4.15 Extension execution process 80

Figure 4.16 Database diagram 82

xix

ABSTRACT

Despite computers are created to serve humans and come for their needs, interac-

tion with computers nowadays is an obstruction to our societal life. Computers,

being it your laptop or smartphone, require significant attention from us to op-

erate. Every time you look down to text on your phone screen is a moment

you disengage from reality. This is due to the lack of intuitive and implicit in-

put capabilities for computer and such minuscule but repetitive behavior have

turned people to prefer keyboards and screens over talking and interacting with

the physical world. Over the past decade, there have been significant efforts in

addressing this challenge via brave new interactive modalities that could weave

seamlessly into our life such as smart glasses, smart rings, smart speakers, etc.

In this thesis, we set forth to extend this line of research for intuitive, effortless,

and enjoyable computer interaction by employing a natural everyday-carry ob-

ject – the smartwatch. We look for extending the capability of the smartwatch

beyond what it already is, i.e., a timepiece and mostly a health monitor, and

become a mean to facilitate an effortless human-computer away from mice and

keyboards. We follow through, first by enhancing the capability of the smart-

watch; then we propose a technique for activity recognition using inertial motion

signals from the smartwatch; and finally, we implement a flexible authentication

framework for multiple platforms authentication using wearable devices that are

highly customizable.

xx

CHAPTER 1

INTRODUCTION

In this chapter, we briefly introduce the overview about smart environ-

ments, together with smart interaction between users and computing

systems. Then we present the motivation and main objectives of our

thesis. Finally, we describe summarize the outline content of this the-

sis report.

1.1 Smart Environments

Exactly three decades ago, Mark Weiser published an important landmark pa-

per “The Computer for the 21st Century” describing the future of computing

in everyday life, in which each person is surrounded by hundreds of computers

[4]. These computers are mobile; they know their location, and they commu-

nicate with each other creating a cyber-physical environment around the user.

Computers are no longer mere passive terminals for the user to interact with

cyberspace, but rather coherent partners that can be active or reactive with

respect to the environment, as well as to the user’s intent. Indeed, Weiser’s pre-

vision has proved to be somewhat of the truth as the reality we are experiencing

now looks a lot like its manifestation.

Following Moore’s Law on computing power [5], the development of application-

specific integrated circuits (ASICs) has powered the success of embedded edge

and cloud computing in recent years and brought about the cyber-physical en-

vironment that is now commonly referred to as the Internet-of-Things (IoT) or

simply the smart environment. Each computer in the current smart environ-

ment is exponentially more powerful than the most powerful computer in 1991,

the year by which Weiser’s article was published. Yet, their sizes can shrink to

the unimaginable size of watches. The embedded edge is the relatively compact

1

or mobile computers that interact directly with the user as peripherals of the

cyber-physical environment [6]. The cloud, on the other hand, is the collective

of high-performance mainframes whose computing power can flexibly expand at

the cost of power consumption. The user, regardless of whether or not aware

of the cloud existence, never actually encounters this part of the cyber-physical

environment or needs to care for its details, hence the “cloud” abstraction. Such

computing power allows the smart environment to be not only active but also

proactive and reactive by perceiving the world through machine learning algo-

rithms executed on both the edge and the cloud. These many components of the

smart environment form a network of diverse devices capable of communicat-

ing with agility, thanks to the high-speed transmission technologies (e.g., optics

fibers, 4G, 5G), and acts in harmony, thanks to efficient distributed consensus

protocols (e.g., Paxos, federated learning), all the while conceding a significant

mass of communication wirelessly as if no literal network exists.

Unfortunately, the invisible Internet-of-Things is the boundary before the resem-

blance between our reality and Weiser’s vision breakdown. Because, as Weiser

put it, “The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable from

it.” This condensed and powerful statement of the vision implies that means of

interaction, instead of only links between such means, should seamlessly inte-

grate with the user’s natural behaviors to the extent that they are no longer

noticeable. As for us now, having the invisible mesh of interconnected devices

is as transparent as we can get. Instead of having the human-computer inter-

action weave cyberspace seamlessly into our lives and enhance our natural and

social interaction, we are having advanced cyberspace fasten to and augment our

physical world. This means we still have to intermittently switch between the

two worlds every day through non-ignorable devices: dashboards, PCs, tablets,

smartphones, etc. All of which are essentially rectangular terminals of various

2

sizes.

Regardless, there has been a large body of work in smart environments. Al-

though works in smart environments and ubiquitous sensing – presented below

– are closely related with overlaps, one can arguably consider smart environ-

ment research to be attempts focused on designing multi-component systems

such that each component embodied a technique in ubiquitous computing or,

more specifically, ubiquitous sensing. As such, state of the art in smart environ-

ments research spans from large-scale systems such as climate monitoring and

smart agricultural systems [7] to domestic and healthcare interactive systems [8].

Within the scope of this work, we pay attention to the human-centric use cases

of the field, particularly in domestic assistive living and personal cybersecurity.

Most smart environment systems share a common scheme of 6 general layers:

the sensor and actuator layer, the communication layer, the information service

layer, the management layer, the security layer, and the application layer [9].

Current commercial offerings such as Amazon Echo, Google Home, and Ap-

ple HomePod are often shipped as a ubiquitous sensing agent that can manage

and interoperate with other devices and various services that take a focal point

in enhancing the daily indoor experience with regards to entertainment, on-

line shopping, control of heating and appliances, monitoring energy usage, and

smart personal assistants [10]. Such systems allow the user to conveniently in-

teract with home entertainment systems like TVs and other home appliances,

including lightnings and indoor climate control simply using their voice. Another

class of common smart assistive environment systems is elderly health monitor-

ing systems, most of which the most common are elderly fall detection systems

[11, 12]. Notable works are the CodeBlue project. These systems often provide

specialized devices for fall detection, e.g., Apple Watch Series 4, iLife fall de-

tection sensor, or Linksys Aware set of WiFi routers, and the integration for

emergency services [12]. The emergency alarms can be triggered automatically

3

using ubiquitous sensing and human activity recognition methods with imme-

diate notifications to other family members and emergency services. Although

the effectiveness of these systems has yet to be fully reported due to the pri-

vate nature of clinical data, Apple Watches instances of saving lives have made

multiple headlines across intensive care units [13, 14, 14, 15]. This also demon-

strates the willingness of user adaptation with respect to personalized wearable

devices. Moreover, the absence of vision-based systems in the commercial land-

scape of these health monitoring systems has proven the importance of privacy

pervasiveness and ubiquitousness in actual useful systems.

1.2 Human-Computer Interaction with Ubiquitous Sensing and Wear-

able Technology

Human-Computer Interaction (HCI) is a field of study focusing on how people

interact with computers. HCI is a combination of the “human side” and the

“computer side”. The “human side” consists of psychology, design, human factors,

and ergonomics. While the “computer side” is about technology [16]. The dogma

of HCI is that computers should enhance our welfare instead of being hinders

to our natural way of life. This demands computers to be interactive systems

that have incrementally refined usability, which in turn, is encompassed by their

safety, effectiveness, and usefulness for human development. More importantly,

as any computer systems were created to serve humans and come for their needs,

these systems must be designed and developed in the context of user-centric,

with emphasis on their enjoyability and ease of use. To achieve such goals, ever

since its establishment, HCI research has been investigating the factors that

determine the way users interact with technology, as well as exploring brave

new modalities of interaction. Such effort has brought about the undeniable

success of the Graphical User Interface (GUI), and the “see, point, and click”

interaction in making computers usable and approachable. Despite its de facto

4

status in ubiquitousness – designing GUI has grown into an integral industrial

discipline of the modern world – they are unnatural and demanding. The instance

we engage with the GUI is also when we disengage with the real world and tap

into cyberspace. This undoubtedly does not conform with our natural behavior

and obstructs our interpersonal communication. This de facto “see, point, and

click” is also the root of “desk job” physiological problems such as carpal tunnel

syndrome, cervical spondylosis, lower back pain, etc.,

The pioneering vision depicted in [4] has inspired a new branch that seeks to

reinstate the de facto of human-computer interaction with modalities that ex-

tend and weave into physical spaces freeing users from rectangular terminals. In

order words, the goal of this research branch, coined ubiquitous computing or

ubicomp, is to design and implement interactive modalities that conform with

our natural physiological and social conditions, making our everyday objects an

easy-to-access, or ubiquitous, interactive modality [6, 17]. Such modalities rely

on robust and reliable sensing techniques for user intents, activities, events, and

context in physical space. Noteworthy body of research in ubiquitous sensing

includes a voice user interface, gesture recognition, gaze tracking, and biosignal

monitoring, etc., all of which consider different contexts (e.g., indoor, ambient,

wearable, wide-area, etc.,) and sensing hardware (e.g., microphones, camera, in-

ertial measurement units, WiFi signals, etc.), and all of which are linked to in

state-of-the-art directions in computer science such as mobile, machine learning,

deep learning, speech and signal processing, etc. One can say ubicomp has blent

itself entirely to the modern landscape of computer science and engineering, yet

it is still subtle with respect to the research community [17]. This is due to the

fact that traditional ubicomp research demonstrates algorithmic novelties us-

ing complex and interdisciplinary proof-of-concept, while most modern research

only focuses on a niche subproblem without an integrated demonstration. Yet,

not much ubicomp research is done with the framework design mindset, limit-

5

ing the reusability of such proof-of-concept prototypes and reduce many novel

works to be chasing the numerical benchmarks. This is a critical final barrier for

ubicomp as a research community, of which the responsibility lies our generation

of researchers.

1.2.1 Ubiquitous Sensing

Although computer vision is being the most popular research direction as of

2021, with IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion ranked as the 4th most cited outlet across all scientific venues by Google

Scholar Metrics [18], there are limited vision-based assistive living systems due to

concerns for privacy intrusion [11, 10]. In commercial offerings such as Amazon

Echo, Google Home, and Apple’s HomePod, speech recognition, natural lan-

guage processing, and voice user interface play an important role as it provides

an intuitive and less pervasive interactive modals. Expensive SOTA research

such as BERT and variants of pre-trained language models [19, 20, 21, 22] and

wav2vec 2.0 pretrained speech representation [23, 24, 25, 26] demonstrate an

emphasis of corporates in developing such seamless user experience that can

easily become part of users’ lives. However, the voice modality is not free of lim-

itations. An obvious limitation is that they do not work in quiet environments.

Besides, there are performance deficits in multi-occupant environment [27], wide

area scenarios, e.g., across the room, biases in gender, age, and accent [28, 29].

Critically, there are privacy concerns for these voice-controlled systems as they

require users to agree with the always-listening and data collecting agreements

in order the achieve the best performance and convenience [30, 31]. Although the

always-listening is less pervasive than always-watching conditions of vision-based

systems, audio is still a human-comprehensible and rich modality of information

that entails serious security breaches.

More recent and advanced approaches consider low-level and unconventional

6

information modalities such as WiFi, radio reflection signals, wearable motion

sensor signals, or biosignals. WiFi-based human activity recognition is an attrac-

tive modality as it is completely “invisible” to the user. WiFi-based sensing draws

from a core principle of ubicomp, which is “your noise is my signal”. The modality

relies on the fluctuation when propagating the channel state information (CSI)

in a multiple-input multiple-output (MIMO) WiFi configuration [32, 33]. The

interference of the signal is exploited to extract environmental landmarks and

even human gestures and activities. Another related wireless sensing modality

that operates on the same principle is radio reflection, which uses dedicated

radio-frequency transceivers instead of commodity routers. Applications using

this modality include motion detection, gesture recognition, identification/au-

thentication, anonymous indoor localization. Notably, WiFi-based sensing is an

effective healthcare monitoring as it has gave encouraging results in fall detec-

tion [32], biosignal monitoring [34], and emotion recognition [35]. This modality

offers a truly ubiquitous experience while being minimally pervasive as it does

not expose human-comprehensible data compare to audio and visual data. As

a prior to this thesis, we have also investigated this modality for fall detection

earlier since our first year with a publication by the end of our second-year [36].

As the wearable modality is a focal point of this work, we dedicate a more more

comprehensible review for it in the subsection below.

1.2.2 Wearable Computing

In 1966, Edward O. Thorp et al. announced a system for roulette prediction

that the first wearable computer. Thorp devised the idea of the system in 1955

when a question was in his mind about the possibility of beating the roulette

wheel, then Claude Shannon joined the project in 1960. They kept the secret

of the project until the 1966 announcement [37]. That the origins of wearable

technology, a technology that is currently leading the Internet of Things (IoT)

7

field. Wearable technology uses different kinds of wearable devices that have the

capability for receiving, storing, analyzing, and transmitting data for various

purposes and applications by using many types of embedded sensors [38].

The term wearable devices refer to such devices that can be worn, attached, or

mounted on a human body or animal or placed in clothing [38, 39]. Wearable

devices can be smart watches , eye wears, body straps, headsets, foot-worn de-

vices, and jewelry [39]. These devices can be electronic devices containing sensors

to collect various types of data [38, 39], they may further include processor and

storage to perform calculating task by itself [38]. Electronic wearable devices can

communicate with each other and communicate with other computing devices

via different protocols to perform data fusion algorithms, cloud computing or

big data [38, 39]. Ometov et al. categorize wearable devices using many factors:

application or functionality types, device types, or on-body locations [40].

Wearable technology innovations are affected by the robust development of mo-

bile computing, and the wearable technology market is growing together with

the growth of smartphone users [39]. In 2013, the year of smart watches when

the technology was sufficient to make these devices cheaper and providing an

experience of wearing a regular watch. Product-based tech companies have put

much effort into releasing a lot of smart watch models with new technology

that is a combination of engineering, design, and fashion [39]. In contrast, the

prices of these devices are getting lower and lower. Nowadays, smart watches are

not only fashionable but also offer a lot of utilities such as notifications, health

monitoring, fitness tracking, and GPS. These features can be compatible with

smartphone apps to increase usability.

The wearable technology development is encouraged by the rapid development

in sensors, material sciences, telecommunication and microelectronics [39] that

introduce new opportunities for wearable technology research topics and applica-

8

Figure reproduced from [38].

Figure 1.1: Health wearable device classification

tions in human-body interaction using wearable devices [39]. Because the variety

of wearable sensors, many types of data can be collected [39]. The collected data

from wearable devices can be biometric and health information [41], motion

information, temperature and humidity data, visual and audio data [38]. The

diversity of wearable sensors and the development of related fields help wearable

technology can be applied to many different fields such as healthcare and health

treatment [38], personalized drugs delivery [42], life logging [43], and applications

lists in Zhang et al. 2020 [39] such as motion capture [44], elders monitoring [41],

privacy [39], education [45], law enforcement [46], activity monitoring [47] etc.

As a result, many people investigate the feasibility of supporting tasks such as

freehand controlling, authentication, lifelog data collecting, and even more. In

2018, Al-Naffakh et al. [49] showed the potential of a smart watch as a user-

friendly individual recognizer. Hence, they collected data from 60 users for mul-

tiple days and applied a segment-based approach dividing gyroscope and accel-

eration data to perform authentication. smart watches are also useful to collect

sensitive lifelog data. However, collecting data using a smart watch faces serious

privacy issues. It follows that Kim et al. 2019 [43] proposed and evaluated a

framework to collect health lifelog data from a smart watch with the collected

data privacy protection by leveraging local differential privacy. Another effort to

prove the feasibility for supporting freehand 3D interaction for a smartwatch, K

9

Table 1.1: Common wearable devices with locations and applications

Types Location Applications

Helmet Head

GPS tracking,
camera,
microphone,
inbuit earphone

VR headset Head
Virtual environment
interaction

Glasses Head: eye
Information display,
interact with mobile devices

Earphones Head, ear Fitness tracking, headphone
Throat Tatto Neck Inbuit microphone

Sports clothing
Upper body,
Under body
or Full body

Motion capture,
step counting,
health information collection,
GPS trackiung

Gloves Hand
Health information collection,
sign language recognition,
hand motion capture

Watch Hand

Health information collection,
display information,
mobile application,
GPS tracking,
activity tracking

Socks and Shoes Foot

GPS tracking,
fitness tracking,
activity tracking,
foot diseases monitoring,
step counting and
health information collection

Implants Under skin RFID chips for authentication

Jewellery
Head, hand,
foot, neck, ear

Use for many types
of tracking and monitoring

Information on this table based on [48] with additional information

10

Pietroszek et al. 2017 [50] introduced a technique called Watchcasting that sup-

ports target selection and translation provided by mapping z-coordinate position

to forearm rotation and proved the performance of the technique by demonstra-

tion 3D interaction in a large display.

Despite having only become mainstream by the mid-2010s, the niche research

of wrist wearable motion-sensing dates back to the early 2010s with Chern-

bumroong et al. attempt to recognize five activities sitting, standing, lying,

walking, and running using the accelerometer on the Ez-4310 Chronos hard-

ware platform using artificial neural network and decision tree [51]. Scholl and

van Laerhoven achieve encouraging results in smoking recognition using a Gaus-

sian classifier and their self-developed Hedgehog sensor platform [52]. da Silva

and Galeazzo return to Ez-4310 Chronos’ accelerometer with their experiments

on recognizing daily living activities, including stair activities and working on

computers, with multi-layer perceptron (MLP), k-nearest neighbors (kNN), and

support vector machine (SVM) [53]. From 2013 to 2017, researcher start to use

smartwatch sensors as the enabling platform but only consider statistical recog-

nizers and sets of activities as before [54, 55, 56, 57]. Notably, public datasets

are being release during this time with the popular WISDM dataset [58] with

daily living activities recorded on smartphones and smartwatches. Stisen et al.

[59] release an analysis of affecting factors for wearable-based activity recogni-

tion with different hardware models and environment contexts. Vaizman et al.

raise the research community awareness on the lack of crowdsourced in-the-wild

data that can actually be useful in practice through a series of publications

[60, 61, 62]. More recently, many works are done to investigate the application

of deep learning methods in human activity recognition and achieve impressive

results [63, 64, 65, 66, 67, 68, 69, 70, 71].

Wearable devices as a truly immersive interactive modality only start to come

into play around 2015, with EM-Sense by Laput et al. exploit electromagnetic

11

wave interference as environmental signature [72]. Later, by overclocking the

smart watch accelerometer, ViBand – an overclocked LG G Watch with gesture

recognizers – demonstrate the capabilities of smartwatch on include being an

interactive modality and being a close-range data transmitter with many further

downstream use cases [73]. The overclocked LG G Watch is later improved to

recognized a wider range of human gesture and activity at different granularities

by using deep learning [74].

Although wearable technology has many useful and important applications, it

also has many challenges and limitations waiting to be solved. A list of technical

limitations of wearable technology, we reused from Qaim el. al [39]:

• Transmission overheads

• Wireless technology-related issues

• Inefficient routing

• Security-related aspects

• Processing limitations

• Storage limitations

• Inefficient use of energy consuming modules

• Battery limitations

Limitations of wearable technology mostly relate to design and development.

Saleem et al. 2017 [48] found highly important challenges are related to social

and security that wearable technology are facing:

• Legislation

• Technical Compatibility

• Privacy

• Third party access

12

• Public by default

• Health information protection laws

Wearable technology is developing very fast with a lot of applications and a lot

of research topics to explore. Zhang et al. [39] claimed that wearable systems is

a crossroads between engineering, design, and fashion. In future, many wearable

devices will be introduced, they will become a part of our daily life. Such devices

will create a smart ecosystem, assistant for our daily life helping us in healthcare,

security, productivity and other daily activities.

1.3 Motivation

Following the necessity of proposing and implementing new modality for inter-

action in order to enhance the way users interact computer systems. In this

thesis, we aim to investigate the feasibility of enjoyable and comfortable inter-

acting techniques. Particularly, we intend to use smartwatch, an unobtrusive

everyday-carry object, coupled with human activity and gesture recognition as

the modality for human-computer interaction. We believe the power of mod-

ern wearable computing and the ubiquitous nature of a watch can yield a truly

gratifying interactive modality. Wu et al. study in 2016 encourages our work by

showing that enjoyment is a factor affects users intent to use smart watches [75].

We aim to achieve this through investigating methods in exploiting inertial mo-

tion signals available on off-the-shelf commodity smart watches , e.g., accelerom-

eters and gyroscopes, for understanding complex human gestures and activities.

We also aim to consider the added gratifying value of this modality, even in its

most constrained form, when used to augmenting daily human-computer inter-

actions beyond “see, point, and click”. Hence, normal computer using scenarios,

such as user login, are investigated with regard to their feasibility in coupling

with smartwatch-gesture interactive modality.

13

Finally, to address the final challenge of ubicomp as called out by Abowd in

making ubicomp systems accessible to a wider community of developers [17],

we take into account the customisabilty and modular approach in our design

such that anyone with the will can modify, upgrade and extend features for

the system. This, we believe, should not only bring in incremental development

values to the developer community, but also add in personalized values for users

as a whole.

1.4 Objective

In this section, we discuss about our objectives, tasks to be done, and our con-

tributions in the scope of this thesis.

1.4.1 Objectives

In this thesis, our objective is to propose a technique for interaction between to

users and computer devices (desktop, laptop, etc) with smart watches . There-

fore, we study the method to enhance off-the-shelf smart watches for achieving

fully potential of inertial sensors. We further aim to understand different ges-

tures based on inertial signal sequences from wearable devices; Finally, we design

and implement a smart and flexible system for computer environments (Linux,

Windows, Web-based) to perform user authentication.

1.4.2 Tasks

In order to realize our objectives, the list of tasks we have done in our thesis:

1. Explore and understand method to modify off-the-shelf smart watches

available on the market to increase sample rate for inertial sensors.

2. Survey technical datasheets related to smartwatch hardwares.

3. Perform hardware interference for our Moto 360 smartwatch.

4. Investigate and comprehend Linux kernels compilation process to build

14

custom Android Linux kernel with custom inertial sensors drivers.

5. Investigate and comprehend techniques to write and modify Linux drivers.

This task includes learning related concepts and components to Linux

drivers in general and in Android devices such as Board files, device tree

files, etc.

6. Investigate and comprehend signal processing methods for smartwatch ac-

celerometer.

7. Survey state-of-the-art methods in smartwatch-based human activity and

gesture recognition.

8. Survey state-of-the-art methods in learning-based sequential signal pro-

cessing.

9. Design human activity and gesture recognizers.

10. Implement human activity and gesture recognizers.

11. Evaluate proposed human activity and gesture recognizers.

12. Implement a client app for smart watches and a server on computers to

transmit inertial sensor data from smart watches to personal computers.

13. Investigate and comprehend authentication systems architecture and pro-

cess on Windows such as Windows Credential Provider Model and graph-

ical identification and authentication (GINA).

14. Implement a custom credential provider for Windows logon to use smart

watch to authenticate.

15. Investigate and comprehend Pluggable Authentication Modules (PAM) ar-

chitecture and process on Linux system.

16. Implement a PAM module to support authentication using smartwatch.

17. Investigate and comprehend common authentication techniques for end-

users and authentication systems that are used on web-based platforms.

18. Investigate and comprehend Google Extension development and implement

an extesion for autologin with our authentication system.

15

19. Design and propose usage scenarios.

20. Build interative demo.

21. Write the thesis.

1.4.3 Contributions

In this thesis, our contributions can be summarize as follow: First, we propose

a solution for interaction by transform existing smartwatch smarter, so they are

able to be used as smart input devices. Second, we propose an approach to per-

form activity recognition using inertial signal sequence that method is inspired

from speech recognition domain. Finally, we build a simple flexible authentica-

tion system for multiple platforms authentication using wearable devices that

easy to customize, upgrade and integrate new modules or platforms.

1.5 Outline

The rest of the thesis is organized as follows. In Chapter 1, we give a litera-

ture review of state-of-the-art related work in smart environments, ubiquitous

sensing, and wearable technology. In Chapter 2, we introduce smart watch

models we use in this thesis, then we present step-by-step smart watch enhance-

ment methods for the devices. In this chapter, an simple socket server-client

implementation is also proposed. The following chapter - Chapter 3 a signal

processing approach for inertial sensor signal understanding is discussed. In this

chapter, we evaluate the system using numerical benchmark. An technical details

of authentication system on popular platforms is proposed in Chapter 4. Then,

we introduce technical details of our implementation of authentication system

using smart watches. Finally, we discuss the evaluation results and an outlook

for further improvements and research opportunities in Chapter 5, before con-

cluding our work in the same chapter. Appendices related to our previous work

toward this thesis attached after the conclusion.

16

CHAPTER 2

FEATURE ENHANCEMENT FOR SMART ANDROID
DEVICES WITH INERTIAL SENSORS

In this chapter, we discuss the characteristics of off-the-shelf Android

Wear devices including Android sensor stack architecture and ineffi-

cient power consumption limitation, then we introduce the possibility

of receiving higher sample rate from the devices’ sensors by hardware

and firmware interference. Finally, we introduce an implementation

for receiving sensor signal transmission from Android smartwatches.

2.1 Hardware and Firmware Interference

We use off-the-shelf Android Wear devices to collect data. Due to the limitation

of smart watches that are inefficient power consumption to achieve better battery

saving, so these smart watches sensors never run at its highest performance. To

get a higher sample rate on these devices, we use custom Linux kernels for

these devices to unlock a higher sample rate. In a typical Android device, sensor

management is performed to help an application in Android OS can access data

sensors, or manage sensors power consumption, the Android sensor stack show us

how an Application which on the highest layer of an Android device communicate

with the lowest layer with different types of sensors.

When an application request a highest sample rate for data of a sensor, then

the sensor itself, the sensor drivers and related drivers, and the sensor hub are

factors that decide the sample rate, these layers are 3 lowest layers in Figure 2.1.

The sensor hub is a optional component that may support data batching, power

saving, controlling and running fusion algorithm [76]. A device with sensor hub

including more functionality, however, harder to be modified.

17

Figure is public in the Android sensor stack document[76].

Figure 2.1: Layers of the Android sensor stack

2.1.1 LG G Watch W100

LG G Watch W100 is an Android Wear-based smart watch released in June

25, 2014 by LG Electronics. The smart watch uses an InvenSense 9-Axis MPU

including an accelerometer, a gyroscope and a compass sensors. The device’s

accelerometer normally runs at 100Hz; however, the accelerometer can reach

4000Hz sample rate that sample rate can be achieved by changing the kernel

that uses another accelerometer driver supports higher sample rate. A modified

version of the Android Dory kernel called FASTACCEL including kernel source

and plug-and-play boot image are available on github that is released in 2016

by Laput et al [73].

18

Where flashing stores the boot image in the watch storage and booting load

the kernel and run it in the watch without storing anything. The kernel boot

image can be booted or flashed into a LG G Watch model W100 device after

unlock bootloader using fastboot tool. Using Android Debug Bridge and Fast-

Boot toolchain running on a bashshell environment, the custom kernel flashing

can be done follow these steps:

• Install Android 5.0.1 (LWX48P) on the LG G Watch, it can be done by

updating the android or flashing the system

• Using Android Debug Bridge (ADB) to open bootloader. In order to use

ADB we have to enable developer features in the watch

1 adb reboot boot loader

• Using fastboot to unlock the bootloader

1 f a s tboo t oem unlock

• Using fastboot to flash the boot image

1 f a s tboo t f l a s h boot <path−to−boot−image>.img

• If we want to boot the image instead of flashing it - the image will be

booted without being stored in the watch storage.

1 f a s tboo t boot <path−to−boot−image>.img

2.1.2 Motorola 360 (2nd generation)

In September, 2015, the second generation of Moto 360 smart watch (Moto360v2)

is released after LG G Watch W100 by one year. The maximum sample rate of

the device, however, is just 50Hz – half of LG G Watch model W100. This

makes us spending much effort of this thesis on learning Linux kernel device

19

Figure 2.2: The first attempt at soldering on the USB connector, without opening

the back.

driver programming and analyzing the kernel source of this device in order to

create a kernel version that can reach a higher value of maximum sample rate.

Unlike the LG G Watch model W100, the Moto 360v2 does not provide an

official wired connector to personal computesr, which is crucial to customize low-

level software components. To adress this challenge, we implement a makeshift

connector by soldering a USB cable to exposing copper strips corresponds to

connector pins. At first, only remove the case and rim of the watch to expose

these copper strips and the first version of our connector is made as in Figure

2.2. Unfortunately, the copper strips are highly delicate while we cannot provide

additional protective support to the solder as it effect the dimension of the watch

and interfere with the wireless charging – the only way the charge the watch.

Thus, the copper strips eventually got ripped off the watch by accident, which

force us to reinvent to makeshift connector. In the second attempt, we open the

back of the watch using a heat gun and solder the USB cable to the remnants

of the copper strips (Figure 2.3). This time we are able to provide additional

protection to the solder as the dimension of the watch has been reduced after

removing the glass back. The charging coil is also exposed, letting us to charge

20

it easier (Figure 2.4). When we successfully solder the watch, we can connect it

to a PC and perform low-level interference.

Figure 2.3: Opening the back of the Moto360v2 using a heat gun

When we flash the fastaccel kernel into the Moto 360, unfortunately, the watch

get stuck at the boot state, creating a boot loop. We subsequently find out that

the Linux kernel and the hardware are not compatible. The solution is creating

a custom kernel using the kernel source of Moto360v2. Fortunately, the Linux

kernel source for the Moto360v2 – codename smelt– is published on Github by

Motorola themselves [77].

After boot image that we create using the source code on Github is successfully

flashed into our device, we are then left with modifying the kernel to overclock

accelerometer sampling rate.

21

Figure 2.4: The second attempt at soldering on the USB connector, with opened

back

2.1.2.1 Build a kernel

In the following text we introduce techniques to compile an Android Linux kernel

for Moto360v2 other devices with the ARM architecture.

To build an ARM kernel using x86_64 intel’s CPU architecture personal com-

puter, cross compile is required. We use Linaro toolchain, specifically GCC-Linaro

-4.8-2016.06-x86_64_arm-linux-gnueabi version for cross-compiling in order the

support the antique kernel version 3.10 of the Moto360v2.

The first step is to provide the target architecture for the cross complier we

are using. Inside Makefile of the Linux kernel, the developers provide 2 vari-

ables named CROSS_COMPILE for cross compile toolchain prefix path specifying

and ARCH variable to specifying the architecture. So we can change the value

inside the Makefile or export 2 corresponding environment variables. The prefix

in this case is arm-linux-gnueabi- corresponding to the version we are using:

1 export CROSS_COMPILE=<path−to−too l cha in >/bin/<pre f i x >

2 export ARCH=arm

22

Next, we need to create the configuration file for the build. The content of

the file provide modules, subsystem, and drivers which will be built with the

kernel. Inside the arch/arm/configs directory is a list of configurations for some

devices, the one we need to pay attention to is smelt_config that is the default

configuration by Motorola. To apply the config to the build we run:

1 make smelt_conf ig

Then we can perform build step, with number-of-jobs is the number of processes

we allow for multiprocessing at once.

1 make −j<number−of−jobs>

Once we successfully built the kernel. We receive 3 files placing in arch/arm/boot:

• Image: a generic kernel image

• zImage: a self-extracting compressed image

• zImage-dtb: a compressed image with device tree blob

We need zImage-dtb kernel version to be booted into our Moto360v2 because this

image provides hardware support configuration. Unfortunately, our device can

only boot these kernel but cannot flash them into the boot sector of the device.

To perform flashing we have to create a boot image, which is an image that wraps

the ramdisk and the image we have built. We retrieve the ramdisk by unpacking

the stock boot image of the Moto360v2 with the support of unpack_bootimg tool

available in Android Open Source Project repository. The tool can extract the

ramdisk and the zImage-dtb of the Moto360v2 stock boot image and provide

information such as offset values, command line, and the page size. Once we

have the ramdisk and these information, the mkbootimg tool is used to create the

boot image which can be flashed into the device. The following script can be

used:

23

1 python mkbootimg . py \

2 −−ke rne l <path−to>/zImage−dtb \

3 −−ramdisk <path−to>/ramdisk \

4 −−cmdline ’<commandlines are given>’ \

5 −−base 0x00000000 \

6 −−page s i z e 2048 \

7 −−k e rn e l_o f f s e t 0x00008000 \

8 −−ramdisk_of f se t 0x02000000 \

9 −−t ag s_o f f s e t 0x01e00000 \

10 −−s econd_of f s e t 0 x00f00000 \

11 −o output . img

2.1.2.2 Smelt kernel source: M4 sensorhub

All sensors on the Moto360v2 are connected to and regulated by and ARM

Cortex-M4 Microprocessor. This microprocessor is a co-procesor of the watch

beside the main CPU and is referred to as the sensor hub.

The core driver of M4 processor is a simple multi-function devices driver (MFD)

which controls contain client drivers for accelerometer, gyroscope, batching, com-

pass, heart rate, step-counter, etc. The goal of this subsystem to help the watch

to use power more efficient, which also means that it threshold the sampling

rate that the sensor can operate.

2.2 Signal Collecting

Sensor data transmission is an essential task to facilitate the smart watch as

an input device. We also need transmit data from sensor in smart watch and

smart phone into our personal computers for various purposes in the developing

process, including data collection and offsetting computational intensive task to

other devices connected to the watch.

24

socket()

bind()

recvfrom()

 write_data() or
 process()

socket()

sensor_change_event()

sent_to()

close close

close?
close?

yes yes

no
no

sensor dataClient

Server

Figure 2.5: Communication and client-side and server-side

Therefore, we implement a client/server application to stream recorded data

from the sensor into our personal computer. The implementation requires socket

programming and Android development knowledge. The client side application

is an Android application, while the server side is a Python application. The

client transmits the data into the server via a WiFi network and communicate

with the server using User Datagram Protocol (UDP). A diagram of the client-

server communication is presented in Figure 2.5. The UDP is chosen to simplify

the current developing process so that we can bypass three-way handshake and

develop a much simpler data collecting application.

In order to reduce coding effort, we inherit an Android wear gesture project that

is published on github by Ziwei Zhu [78]. We reuse message structure and GUI

implementation in the project, but the UDPmessage sender is re-implementation

to meet our requirement. Essential details to our implementation are discussed

further in the following subsections.

25

The application has the "START RECOGNIZING" button to run the socket
client. While the process is running, it can be stopped by pressed on the

"STOP RECOGNIZING" button.

Figure 2.6: Android socket client application is installed on our Moto 360 watch

2.2.1 Client

A watch with the socket client installed is depicted in Figure 2.6. The socket

client is an Android Wear Application that is implemented using AndroidSDK,

compose of sensor event listener and an UDP message sender.

2.2.1.1 UDPSender

The UdpSender implementation is using classes in java.net library.

The message sender is a simple socket client that byte arrays over the the net-

work. The UdpSender class contains a string attribute with a value being the

server’s IP address and a SentTo() method which send a byte array to the cor-

responding server IP address if the method is called.

1 pub l i c c l a s s UdpSender {

26

2 f i n a l S t r ing host = "<se r v e r ip>" ;

3 pub l i c void SendTo (byte [] msgBytes) { . . . }

4 . . .

5 }

The SentTo() method creates and starts a new thread to send the collected

data as a byte array to the server. Under the created thread, we create a

DatagramSocket object and try to enable socket broadcast if the socket broad-

cast is not enabled. When the socket broadcast is ready, we make new a object

named packet which is an instance of the DatagramPacket class to create a new

packet containing the IP address of the server, the port of the server, the byte

array data, and then length of the byte array. Finally, we send the packet and

close the connection. We make use of try-catch statement around the code to

handle unexcepted exception.

1 pub l i c void SendTo(byte [] msgBytes) {

2 f i n a l byte [] buf = msgBytes ;

3 // Star t new thread with a func t i on f o r datagram sending

4 new Thread (new Runnable () {

5 pub l i c void run () {

6 t ry {

7 // An InetAdress ob j e c t i s i n i t i a l i z e d

8 // to r ep r e s en t an In t e rn e t Protoco l (IP) address

9 InetAddress se rverAddres s =

10 InetAddress . getByName(host) ;

11 DatagramSocket socke t = new DatagramSocket () ;

12 i f (! s ocke t . getBroadcast ())

13 socke t . se tBroadcast (t rue) ;

14 // Create a packet ob j e c t conta in s bytes array

15 // and s p e c i f y IP−port d e s t i n a t i on

16 DatagramPacket packet =

27

17 new DatagramPacket (buf , buf . length ,

18 serverAddress , 4569) ;

19 // Send packet and c l o s e the socket

20 socke t . send (packet) ;

21 socke t . c l o s e () ;

22 }

23 catch (UnknownHostException e) {

24 // except ion handl ing

25 }}}) . s t a r t () ;

26 }

2.2.1.2 Sensor Event Listener

The purpose of the application is to get data from sensor and transmit them

into server using the UdpSender.

The main activity is an implementation of abstract class SensorEventListener

and an extended class of the Activity class in AndroidSDK API. We override the

onSensorChanged() method from SensorEventListener. Inside the onSensorChanged

() method, there are 3 if-statements. The first if-statement is using to verify

the sensor’s reliability. The second and the last if-statement is use to guarantee

the sensor is an accelerometer. In the second if-statement, the sensor data is

assigned to data node and inside the last if-statement block, the packet number

and timestamp are also added to dataNode before sending the dataNode structure

in JSON format using UdPSender.

1 @Override

2 pub l i c void onSensorChanged (SensorEvent event) {

3 // I f accStatus i s f a l s e

4 i f (! accStatus) {

5 // Create new data node s t r u c tu r e

28

6 dataNode = new DataNode () ;

7 }

8 // v e r i f y the s enso r event i s from an acce l e romete r

9 i f (event . s en so r . getType () == Sensor .TYPE_ACCELEROMETER) {

10 // Update accStatus f o r next s tep

11 accStatus = true ;

12 // a s s i gn event data to data s t r u c tu r e

13 dataNode . setACC(event) ;

14 }

15 // Ver i fy the s enso r i s an acce l e romete r

16 i f (accStatus) {

17 accStatus = f a l s e ;

18 // Get cur r ent timestamp and a s s i gn to data s t r u c tu r e

19 long currentTime = System . cur rentT imeMi l l i s () ;

20 dataNode . setTimeStamp (currentTime) ;

21 // Set data node number

22 dataNode . setPktNum(++pktNum) ;

23 // Convert dataNode to JavaScr ipt Object Notion St r ing

24 St r ing j son = new Gson () . toJson (dataNode) ;

25 // Use UdpSender to send converted byte array

26 sender . SendTo (j son . getBytes ()) ;

27 }

28 }

2.2.2 Server

The server is a Python socket application that initializes the socket connection

and receives UDP packets sent by the client. By using Python to create a socket

server, we can easily integrate other Python packages for additional function-

alities such as data processing on-demand. The structure of the main process

is simple. The first 2 lines are declarations for the IP address and the socket

29

PORT number of the server. In the next line, the socket.socket() method use to

create mew socket takes 2 parameters: the first parameter is the address family

and the second one is the socket type. In this case, the socket is created as an

UDP socket with AF_INET address family (IPv4). A while loop is placed after the

socket binding step to listen to sensor data from the client. When sensor data is

received, a data processing function or data storing function can be called. The

following lines are our server implementation in Python:

1 IP = <server−ip>

2 PORT = <port−number>

3 # Create socke t use Address Family type AF_INET (IPv4)

4 # Spec i f y the socket i s datagram socket with SOCK_DGRAM value

5 sock = socket . socke t (socket .AF_INET, socke t .SOCK_DGRAM)

6 # Bind the socke t

7 sock . bind ((IP , PORT))

8 # Open a data l i s t e n loop

9 whi le True :

10 # re c e i v e data us ing a bu f f e r with s i z e equa l s to 1024

bytes

11 data , addr = sock . recvfrom (1024)

12 # After data i s r e c e i v ed

13 # data can be proce s sed or wr i t t en in to d i sk

30

CHAPTER 3

INERTIAL SIGNAL SEQUENCE UNDERSTANDING FOR
SMART INTERACTION

In this chapter, we present our proposed method for analyzing inertial

signal sequences to understand users’ gestures. Inspired by the process-

ing model for speech recognition, we propose our method to work on

frequency domain. The proposed method is capable of both recognizing

a single gesture from a frame of sensor’s signals, and recognizing a

sequence of gestures. We present the experimental results on WISDM-

HARB dataset in the last part of this chapter.

3.1 Signal Processing

When considering the signal used for gesture and human activity recognition,

the literature have consistently reported that the accelerometer outperform the

gyroscope on smartwatches in term of stability, and hence often yield better per-

formance [58, 79, 60, 80, 59]. Thus, we only focus on developing the processing

pipeline for accelerometer signals. Despite most of previous works only consider

frame-based recognition of human activities, i.e., casting the problem in to a

classification of sensor reading segments, we argue that such approaches con-

straint real-time interactive use case. In fact, it has been acknowledged that the

frame-based approach can only work for limited simple activities as the frames

does not consider the variance in time of different activities, as well as different

phases of activities. Hence, this approach is not able to recognize compound

dynamic activities, e.g., sports [81], or similar activities with common phases of

action, e.g., eating activites [79, 58]. Therefore, we aims to develop a more gen-

eral solution using the sequence-to-sequence approach, which is detailed below.

31

3.1.1 Heterogeneities and time-domain vs. frequency domain features

It has been shown in [59] that (1), the practical sampling rate of smartwatches

varies in real-time due to different CPU workloads, and (2), frequency-domain

features are more resilient to sampling rate variation compare to time-domain

features. As we aim for a robust real-time algorithm, it is reasonable for us to

opt for preprocessing and training our learning-based algorithm using frequency-

domain features.

However, unlike previous work, which only focus on static time-steps classifica-

tion, we aim for a dynamic and continuous activity recognition, which means

the data will unavoidably be processed in a time-based manner. After many

considerations, we decided to employ sequence-to-sequence models with input

features preprocessed to be in time-frequency domain, i.e., time-based frames

with localization of frequency-domain features.

3.1.2 Discrete Fourier Transform

The Fourier Transform is a change of basis transform that describes a continuous

function in terms of a Fourier series defined in terms of periodic functions, which

is an infinite sum of cosines and sines of increasing frequency. Using Euler’s

formula, the Fourier transform of a continuous real-valued function x(t) ∈ C, t ∈

(−∞,∞) can be written as

X(ω) ,
∫ ∞
−∞

x(t)e−jωtdt

In practice, however, we are rarely able to access continuous functions, thus the

above form of the Fourier function is not particularly useful. Instead, what we

actually deal with are series of sensor readings over timesteps, which are regarded

as discrete samples of a continuous-time function that describe the underlined

32

phenomena. Thus, in order to make the Fourier Transform useful, we need the

discretized version of it, which is defined using the Riemann sum over the length

of the signal sample instead of infinite integral

X(ωk) ,
N¯1∑
n=0

x(tn)e−jωktn

where tn is the nth sampling instance and N is the number of samples.

In practice, we almost always use the Cooley-Tukey Fast Fourier transform

(FFT) algorithm [82], which achieves the time complexity of O(N logN) instead

of O(N2) for the exact DFT. Thus, the terms FFT and DFT are often used

interchangeably.

3.1.3 Short-time Fourier Transform

The short-time Fourier transform (STFT), also known as the Gabor transform

[83, 84], computes a windowed FFT in a moving window. This enables the lo-

calization of frequency content in time, resulting in the spectrogram, which is a

plot of frequency versus time.

In our application of accelerometer signal processing, each raw sensor readings

is a 3-tuple of real values (x, y, z). A general segment of data can consist of

multiple readings, which can be preprocessed using the STFT. For each sample,

we compute the power spectrum using the FFT with a Hanning window instead

of a Gaussian to minimize spectral banding. To make the frequency features

robust across initial conditions, each of the FFT bin is normalized by dividing

by the frame length to remove the DC component.

33

Figure 3.1: LeNet-5 – the original CNN reproduced in [1]

3.2 Learning-based Signal Processing

3.2.1 Foundational Methods

3.2.1.1 Convolutional Neural Network

The Convolutional Neural Networks (CNN) is arguably one of the most powerful

ideas in modern computer science. Not only it has achieved the state-of-the-art

results of its time but also has lent itself to become an important foundation in

modern deep learning. The original CNN – LeNet-5 (Figure 3.1) – architecture

consists of convolution and pooling operations followed by a multi-layer percep-

tron [85]. The weight-shared convolutional and pooling operations are the key

ingredients for the model effectively extract and aggregate local invariants while

remain to be compact with respect to the number of parameters.

The convolutional filter layers are interleaved with activation functions, followed

by spatial feature pooling operations such as subsampling. For each 2D input

matrix I, the convolutional layer computes the cross-correlation by convolving

a trainable filter kernel of size K ×K across the input.

34

F (i, j) = (I ∗K)(i, j) =

K∑
m=0

K∑
n=0

I(m,n)K(i−m, j − n)

This results in a smaller output matrix often referred to as the feature map

as each element of this matrix is a feature extracted from a connected neigh-

borhood of elements in the input. Each convolutional layer Ci often contains a

given number of different kernels that map to different feature maps. A train-

able bias is added to the results of each convolutional mask, and a hyperbolic

tangent function, used as an activation function is applied. These feature maps

are stacked together as channels, resemble the color channels of images, and are

used as the “input image” for the next layer. The feature map produced by the

convolutional layers is highly effective in extracting low-level features as they

take advantage of the translational symmetric of the cross-convolution opera-

tor. As such, the resulted feature maps are translational equivariant, meaning

if the input is translated, the feature is also translated in the feature space to

reflect that change. This helps the learned kernel to generalize edge, texture,

and shape features in different relative locations. Once a feature has been de-

tected, its exact location is less important for some tasks such as classification.

Hence, each convolutional layer Ci is typically followed by a pooling layer Si that

takes the average (or maximum) values over a neighborhood and multiplies it

by a trainable coefficient and adds a trainable bias. Pooling layers aggregate the

equivariant features to be invariant, i.e., enforcing location-varied inputs to re-

sult in consistent feature maps, which is helpful for the final layers of multi-layer

perception for classification.

Despite in the original paper, non-linear activations are used, it has been shown

that performant results are achievable through longer training time without

non-linear activation functions. For the sake of brevity when comparing with

the separable convolution layer, we will demonstrate the complexity of a convo-

35

3

3

3

8

8

8 6

6
128

Figure 3.2: Normal Convolution

lutional layer with identity activation function. Such convolutional layer CI with

a kernel size Ki and an input of size Win × Hin would yield an output map of

size Wi ×Hi where (Win, Hin) = (Win −Ki + 1, Hin −Ki + 1).

The complexity of the back-propagation delta-rule algorithm for a given element

is proportional to its output map size and the cardinal of its connections with

the following layers. That means the complexity is proportional to (Wi×Hi), The

number of weight-shared parameters is proportional to (Wi × Hi × K2
i). Notice

that for a fully connected layer in an MLP that does not employ the weight

sharing kernel trick, the number of parameters for such given input would have

been proportional to (Wi ×Hi ×Win ×Hin), which is considerably larger.

3.2.1.2 Separable Convolutional Filters

One common way to simplify the convolutional layers, and hence reduce the

number of parameters, is by using separable convolutional filters. Separable con-

volutions can be expressed as the outer product of two vectors: Ci = Chi ∗Cvi =

Cvi∗Chi where Chi is a row and Cvi is a column vector of size Ki. This technique

has been well-known in image processing with the most famous example being

the separable Sobel filters. In normal feed-forward computation applied over a

W × H input image, this transformation leads to a K2
i /(2Ki) speedup factor.

This type of 2D convolution has been applied since at least 2012 [86] to speedup

LeNet (Figure 3.1).

36

3.2.1.3 Depthwise Separable Convolutional Layer

Although the 2D separable convolution has been a well-known technique in,

its version for 3D tensors are widely used only after the Xception paper [87],

based on the extreme Inception hypothesis for convolutional neural network,

introduced in [87]. In a convolutional neural network, a convolution layer at-

tempts to learn filters in a 3D space with 2 spatial dimensions and 1 channel

dimension implies that it is tasked with simultaneously mapping cross-channel

correlations and spatial correlations. The Inception hypothesis postulates that

cross-channel correlations and spatial correlations are sufficiently decoupled that

it is preferable not to map them jointly. Hence, the cross-channel correlations

can be captured by 1× 1 convolutions and spatial correlations can be captured

via regular 2D convolutions. The Xception hypothesis take this postulate to the

eXtreme, coined Xception, and assume that cross-channel correlations and spa-

tial correlations can be mapped completely separately, and subsequently perform

1 × 1 on every channel before the 2D convolution on each of the cross-channel

output. As the convolution is commutative and the two convolution operators

under the Xception hypothesis is always pairwise coupled, the order of the op-

erator is not important. This pairwise operator is called depthwise separable

convolution and is implemented as a 2D depthwise convolution (Figure 3.3) fol-

lowed by a pointwise convolution (Figure 3.4)in practically every modern deep

learning frameworks [88, 89, 90].

3.2.1.4 Time-depth and time-channel Separable Convolutional Layer

The concept of time-depth separable convolution (TDSConv) is first proposed

in [91]. Hannun et al.’s TDSConv block operates over an input of shape T ×w×c

where T is the number of time-steps, w is the input width and c is the number

of channels. The basic TDSConv block is composed of a 2D convolutional layer

where kernels are size k× 1 over (T ×w) and a fully-connected block, consisting

37

8

8

3

3

3

1

1

1

6

6

3

Figure 3.3: Depthwise Convolution

6

6

3

1

1
3

6

6
128

Figure 3.4: Pointwise Convolution

of 1 × 1 pointwise convolutions operating on (w · c) channels interleaved with

layernorm layers. The fist 2D convolution layer take in an input of shape T×w×c

and also ouput of shape T ×w×c. Then the output is recast into shape T ×1×wc

and apply a sequence of two pointwise 1×1 with ReLU non-linearity in between.

The total number of parameters in this layer is k × c2 + 2× (w · c).

The separable block employ in our work, in contrast, operates on data in time-

channel format (T×c) and completely decouples the time and channel-wise parts

of convolution and is called time-channel separable convolution (TCSConv). This

means instead of employing a 2D separable convolutional layer followed by 2

pointwise convolutions as of the TDSConv, we substitute it with a 1D separable

convolution follow by 1 pointwise convolution (Figure. 3.5). Particularly, the

input is casted as a multi-channel time sequence of shape T × c with a depthwise

convolution layer and a pointwise convolution layer, reducing the number of

parameters to be k × c + c2.

38

1

𝐾

1
1

1

1

1𝑇
𝐶

𝑇′

𝐹
𝐹𝐶 𝐶

𝑇′

Figure 3.5: Time-channel Separable Convolution

We start with an input sequence,
like a spectrogram of audio.

The input is fed into an RNN,
for example.

The network gives pt(a | X),
a distribution over the outputs
{h, e, l, o, ϵ} for each input step.

With the per time-step output
distribution, we compute the
probability of different sequences

By marginalizing over alignments,
we get a distribution over outputs.

llle o

olllehh

lleh o

o

ll oϵ

ϵϵ

ϵ

ϵ ϵ

ϵ ϵ

ϵ

e

l

l

le

o

o

o

lleh

h

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

h
e

ϵ

l
o

Figure 3.6: CTC algorithm for speech recognition [2]

3.2.1.5 Connectionist Temporal Classification Loss

Based one of the authors’ experience in working with industry speech recogni-

tion systems, we are inspired to design our sequence-to-sequence model to be a

Connectionist Temporal Classification (CTC) loss.

In previous approaches and public datasets for accelerometer-based human ac-

tivity recognition, each accelerometer recordings during the course of an activity

A are assigned a label A, regardless of which phase of the action it currently is.

39

Similarly, traditional training data used for speech recognition problems, where

the recognizer transcribes a sequence of audio signals to a sequence of texts,

requires every time frame of a voice recording to be labeled with a token. The

limit of such approach is two-fold. First, such approach is not semantically sound

for complex data with different phases as we have discussed above. For speech-

to-text, it is sometimes impossible to have a concrete alignment between the

modalities of source data and text-based labels, e.g., the alignment between

phonemes and morphemes or character. Second, and more important to the

task of human activity recognition, the intensive labeling effort constraint the

collection of data to be mostly “in vitro” with organized sessions and prevent

the acquisition of crowdsourced “in-the-wild” data as annotating the data along

their natural routine can be bothersome for experiment participants [61, 60, 80].

To address this alignment problem, people have proposed the Connectionist

Temporal Classification approach. For a given input sequence X = [x0, x1, . . . , xT]

correspond to an output sequence Y = [y0, y1, . . . , yT].

The CTC algorithm gives us the an output distribution of all possible Y given

an X. In other words, this is a probability distribution for all valid alignments

from X to Y , where a valid alignment A from X can be collapsed into Y . For

example, ccaaat, caaat, and catttt are valid alignments for cat.

Formally, with a set of learnable parameter Θ we consider P (Y |X; Θ) with

p(Y |X) =
∑

A∈AX,Y

∏T
t=1 pt(at|X) is the objective probability for a single (X, Y)

pair computed by propagating the probability of token alignment step-by-step.

T is the sequence length, AX,Y is the set of valid alignment for the pair (X, Y)

drawing from the set of pairs propose by the recognizer, and A is a single valid

alignment.

Using this probability distribution, we can either infer a likely output or assess

the probability of a given output. Based on this distribution, a differentiable loss

40

function is computed as follow:

L =
∑

(X,Y)∈D

−logp(Y |X)

where D is the training set.

3.2.2 Compound Methods

3.2.3 QuartzNet - Separable Convolutional Network for Sequential

Signal

QuartzNet is an encoder-decoder CTC model originally designed for speech

recognition tasks [3]. QuartzNet is famous for achieving near state-of-the-art

results on large English speech recognition corpus while being very compact.

Thus, it is highly favored in production settings where processing delay and de-

ployment resource requirement is crucial. During one of the author experience

in working with industry speech recognition systems, QuartzNet is regularly

considered as deployment candidates, achieving good performance across both

English and Vietnamese corpi. However, as mentioned systems and data corpi

are confidential information, we are prohibited from discussing them in more de-

tails. Inspired by such performance given by QuartzNet, we adapt this model to

the domain of human activity recognition using accelerometer data with the aim

of achieving a good trade-off between performance and deployment constraints.

The building block of QuartzNet is the time-channel separable convolution (TC-

SConv) described in Subsection 3.2.1.4. The architecture of QuartzNet defines

the TCSConv-BN-ReLU block to consist of a K-sized depthwise convolution

layer followed by a pointwise convolution layer and batch norm. The output of

the TCSConv-BN-ReLU block is computed via the non-linear ReLU activation

function.

41

TCSConv

TCSConv

× 𝑅

× 𝐵

TCSConv

× 𝑅

TCSConv

Conv

Pointwise Conv
ReLU

Pointwise Conv

1D Depthwise
Conv

Batch Norm

Pointwise Conv

Batch Norm

ReLU

Pointwise Conv

Depthwise Conv

Batch Norm

CTC

Time-channel
Separable

Convolution

Encoder

Decoder

Figure 3.7: QuartzNet architecture adapted from [3]

The encoder-decoder architecture of QuartzNet is designed as a sequence of

blocks. Each B×R configuration of QuartzNet consists of B block, each blocks,

in turn, is made up of R repeated TCSConv-BN-ReLU sub-blocks. Each block

input is connected directly to the last sub-block via a residual connection. Along

this residual connection, the feature maps are projected through a 1×1 pointwise

convolution to adapt with different numbers of input and output channels, before

getting normalized through a batch norm layer. This residual connected feature

is also added to the output of the batch norm layer in the final sub-block within

each block. Finally, the result of each block is passed through an activation

42

function and dropout layer before getting forwarded to the next block.

We propose two approaches to adapt QuartzNet for the tri-axial accelerometer

data as presented in the following subsections:

3.2.3.1 QuartzNetBxR-1D

We coin the first approach as QuartzNetBxR-1D. In this approach, we com-

pute the STFT features of accelerometer axes separately before concatenating

them channel-wise. Doing this allow us to reuse the TCSConv as in the orignal

QuartzNet, with custom hyperparameters considered below.

3.2.3.2 QuartzNetBxR-3D

In the second approach, the STFT features of axes are stacked depth-wise, creat-

ing a 3D tensor of shape (T, n_feature_bins, 3). We then implement a TDSConv

block based on the TCSConv, where 2D depthwise convolution and pointwise

convolution is used. Our implementation resemble the TDSConv block imple-

mented by Hannun et al. TDSConv [91] in term of operating dimension. However

they are simpler as the depthwise separable convolution is only follwed by one

pointwise convolution instead of two. Its features map is compensated through

the residual the pointwise convolution along the residual connection to the final

layer of each Bi block and between Bi blocks instead.

3.3 Implementation Details

Unlike the original QuartzNet which use mel-filterbank features calculated from

the STFT power spectra with 20ms windows over 16kHz mono audio with a 10ms

overlap, we adapt QuartzNet for tri-axial accelerometer first at the preprocessing

stage. To adapt with the 20Hz sampling rate of the WISDM dataset, we adjust

the STFT window size to be of 3 seconds, with a stride of 0.5 second, which

yields 120 samples per input frame. The number of FFT bins is chosen to be

43

60 to achieve 0.5Hz resolution adapted from the preprocessing in [74]. However,

only the first 20 bins, correspond to frequencies 0−10Hz are used as these are the

only bands with information captured in full, according to Whittaker-Nyquist-

Shannon sampling theorem [92].

3.3.1 QuartzNet

We implement the described QuartzNet by extending the open-source NVIDIA

NeMo Toolkit [93] and Pytorch library [89]. All of models used in experiments are

trained using the NovoGrad optimizer, also proposed in the original QuartzNet

paper.

3.3.1.1 QuartzNetBxR-1D

For the QuartzNetBxR-1D approach, we choose to start our experiment with

the smallest QuartzNet configuration reported with good results, with B = 5

and R = 3 [3]. Next, as the original kernel size of QuartzNet is too large for the

our samples, we perform manual parameter sweep to find a suitable kernel. The

kernel size start at 3 and is increased by 6 for every consecutive layers, except

for the first two layers whose kernel sizes are different by 3. The tuning data

configuration used is the first splitting configuration described in Subsection

3.4.1. In each tuning iteration, the kernel sizes are increased by 2. After many

iterations of not encouraging results, we restart the procedure by keeping the

first kernel size be the original 33 while kernels in the rest of layers follow the

sweeping process.

Next, as we proceed to evaluate the model on other configuration of data, we

need to continue tuning the model as the abundant capacity of the model make it

prone to be overfitted to the training set distribution and while perform poorly

on the validation distribution only after a couple hundreds steps. To address

44

this we start another parameter sweeping procedures for the number of filters in

each layers. We replace the layers with 256 filters by 8 filters and layers with 512

filters by 32 and double them after each iteration. The number of filters in the

final pointwise convolution layer is set to be double that of its previous layers,

and the number of layers in between is also reduced, starting with only 1 Bi

layer and increase every iteration. For a given number of layer, the procedure

consider increasing the number of filters until reaching the original size before

increasing the number of layers and restart the sweeping process for kernel sizes.

We observe that more restrictive models are less prone to overfitting but also

less likely to reach a good loss. Given the low resolution dataset with a limited

size, it is hard to nail a sweet spot of trade-off. We then restart the procedure

again, this time taken into account the dropout rate to randomly sparsify the

model by randomly skip layers. After iterations, we identify a good trade-off

point is using a large model with an aggressive dropout rate of 0.25. This config-

uration let model to have enough complexity to extract complex patterns from

low resolution data while being able to counter the overfitting behavior.

This refined configuration of the architecture is defined using the Hydra-based

listing as follow:

1 name: &name " QuartzNet5x3 -1D"

2 model:

3 sample_rate : & sample_rate 20

4 repeat : & repeat 3

5 dropout : & dropout 0.25

6 separable : & separable true

7 batch_size : & batch_size 256

8 use_cer : true

9

In the heading of the model, we declare resusable fields such as sample_rate

45

which can be used across the configuration of dataloaders as well as in the

preprocessor, separable to be used in declaring convolution blocks, and use_cer

to signify the the use of the predefined character error rate to evaluate our model

as we consider each of our label is a character.

Then for the preprocessor configuration, we have

1 preprocessor :

2 _target_ : modules . preprocessing .

AudioToSpectrogramPreprocessor

3 normalize : " per_feature "

4 window_size : 3

5 window_stride : 0.5

6 sample_rate : * sample_rate

7 window : "hann"

8 onesided : false

9 n_fft: 60

10 fft_head : 20

The preprocessor is instantiated as a custom class

modules.preprocessing.AudioToSpectrogramPreprocessor we implement to facilitate

our custom STFT procedures. Particularly, our custom class consider the onesided

parameter to facilitate asymetric FFT around 0 that can save the computation

effort, and fft_head parameter to faciliate our selection of feature bins.

Next, the encoder is defined as an instance of the ConvASREncoder module – a

NeMo NeuralModule for Convolutional Encoder. Specifically, as QuartzNet ex-

tends the implementations of the Jasper family [94], it can be implement by re-

defining specific arguments of Jasper’s base configuration for convolution blocks.

1 encoder :

2 _target_ : nemo. collections .asr. modules . ConvASREncoder

3 feat_in : 60 #20 * 3

4 activation : relu

46

5 conv_mask : true

6

7 jasper :

8 - dilation : [1]

9 dropout : * dropout

10 filters : 256

11 kernel : [33]

12 repeat : 1

13 residual : false

14 separable : * separable

15 stride : [2]

16 ...

17

Each block in the jasper represent a convolution block in Figure 3.7. The last

pointwise convolution is the decoder and is instantiate as the nemo.collections.

asr.modules.ConvASRDecoder as follows:

1 decoder :

2 _target_ : nemo. collections .asr. modules . ConvASRDecoder

3 feat_in : * enc_filters

4 num_classes : 18

5 vocabulary : ["A", "B", "C", "D", "E", "F", "G", "H", "I

", "J", "K", "L", "M", "O", "P", "Q", "R", "S"] #WISDM

dataset does not have class "N"

6

Details configuration of these blocks is summarized in Table 3.1.

In Table 3.1, each block Bi consists of R repeated TCSConv blocks. Each TC-

SConv block, in turn, has a kernel size of K, F filters, a dilation factor of D,

and a stride of S.

47

Table 3.1: QuartzNet5x3-1D convolution block hyperparameters

Block R K F D S

C1 1 33 256 1 2

B1 3 3 256 1 1
B2 3 6 256 1 1
B3 3 9 512 1 1
B4 3 12 512 1 1
B5 3 15 512 1 1

C2 1 18 512 1 1
C3 1 1 1024 2 1
C4 1 1 ||labels|| 1 1

3.3.1.2 QuartzNetBxR-3D

To faciliate the design of QuartzNetBxR-3D, we implement two custom classes

modules.conv_asr.ConvASREncoder and modules.conv_asr.ConvASRDecoder from the

base for nemo.collections.asr.modules.ConvASREncoder and nemo.collections.asr

.modules.ConvASRDecoder. In our preliminary experiments with QuartzNetBxR-

3D models, they are able to converge much more quickly compare to their

1D counterparts. However, the performance is not different from a converged

QuartzNetBxR-1D by a significant margin. Being that, the effects of configura-

tion found for the QuartzNetBxR-1D is also applicable for the QuartzNetBxR-

3D except for the operating dimension with comparable results. Extending the

filters to new dimension, however, significantly slow down the time processing

each epoch, suggesting that the processing time for each sample is significantly

longer. For that reason, we do not proceed with this approach beyond prelimi-

nary findings.

48

3.4 Numerical Benchmarks

3.4.1 The WISDM-HARB Dataset

The “WISDM Human Activity Recognition and Biometric Dataset” (WISDM-

HARB Dataset, also known as the WISDMv2 dataset) obtained from the UCI

Repository is one of the few publicly available datasets in the field of smartwatch-

based human activity recognition and is commonly used as a standard dataset

across studies. The dataset contains tri-axial accelerometer and tri-axial gyro-

scope data captured at a rate of 20 Hz from smartphones running Android 6.0

(Google Nexus 5/5X and Samsung Galaxy S5), as well as a smartwatch running

Android Wear 1.5 (LG G Watch) from 51 participants. The data is collected

in controlled sessions where participants conduct 18 courses of predetermined

physical human activities in each session. The activities include six general liv-

ing non-hand-oriented activities, seven general living hand-oriented activities,

and five eating-related activities with hand-oriented implications. A detailed

summary of the activities in the dataset is given in Table 3.2. Each activity is

carried out repeatedly for roughly 3 minutes during the recording session before

moving on the the next activity. In order to assess our models, the data need to

be segmented, of which we employed several schemes.

49

Table 3.2: WISDM dataset activities

Type Subtype Activity Label

General activities

Not hand-oriented

Walking A
Jogging B

Climbing Stairs C
Sitting D
Standing E

Kicking Soccer Ball M

Hand-oriented

Typing F
Brushing Teeth G

Dribbling Basketball P
Tennis Ball Catch O

Handwriting Q
Clapping R

Folding Clothes S

Eating activites Hand-oriented

Eating Soup H
Eating Chips I
Eating Pasta J
Drinking K

Eating Sandwiches L

Interleaved activity segmentation with overlaps:

As each activity in the dataset are organized into discrete recording courses while

our model aims to recognize dynamic continuous sequences of activities, we need

to emulate the data to facilitate our experiments. We segment continuous courses

of activity into 3-second frames at , i.e., 60 sensor readings, each labeled by the

activity of its original course. Then, we randomly shuffle these frames for each

recording session – consists of 18 activities from a participant – and then segment

them in sequences of various length. Then the set of samples is randomly splitted

for the training set, validation set, and testing set with a ratio of (0.7, 0.1, 0.2)

and a pseudo-random seed of 65.

At first, we considered this splitting set to share the characteristics of normal

50

splittings used with the WISDM datset, where the samples are single 3-second

frames with significant overlaps between 50%− 80% between frames [95, 96, 97,

98, 99], and is used to evaluate initial configurations of our model. However,

after more careful consideration, we acknowledge that our model should not be

trained on overlapping datasets as our model does not share the characteristics

with other previously proposed models. Compare to our model, previous models

operate on a single-frame basis, hence they might need temporal shifting con-

texts to better recognize the time-series patterns. Our model, however, works on

a sequence basis with temporal shifts and alignment issues already been handled

by the CTC loss. Thus, considering data with overlaps is taking an unnecessary

risk of leaking data between the training set, the validation set, and the testing

set. Even though no two samples are exactly the same, bits of shared information

can still be embedded within each other, results in potential data leaks in ran-

domly splitted subsets. Overlapped samples also yield more similar distribution

between each data split compare to non-overlaped samples.

51

Given our goal is to develop and deploy a practically useful model, we choose not

to proceed with this data configuration beyond tuning for the kernel sizes, even

though our models were able to achieve a sequence error rate less than 0.0025.

3.4.2 Interleaved activity segmentation without overlaps

In this data configuration, we also split activities into 3-second frames and ran-

domly shuffle frames for each recording session. However, we carefully create

sequences by non-replacement sampling, i.e., making sure there is no frame ex-

ists in two different sequences, regardless of their sequence length. We introduce

two sub-configuration for evaluation with this segmentation schemes: sequences

with randomly varied length and sequences with a fixed 60-second length.

Fixed time-frame segmentation:

As discussed, the standard treatment for the WISDM dataset is to sample all

recordings into 3-second frames with significant overlaps. Each of these frames

are treated as a single sample for discrete activity recognizers. Despite our model

is designed for sequence-to-sequence approach with not overlap between sam-

ples, we figure that we can evaluate the model on a similar, but more restrictive,

ground with previous studies by using degraded 1-length sequences. In this case,

the error rate metrics computed using edit distance is equivalent to the comple-

ment of accuracy by definition. This “on-point” evaluation and inference mode

is applicable for power-saving mode of human activity recognition, e.g., wake-up

motion, where the device only intermittently record and analyze samples “at a

glance”, instead of recording the data continuously. However, as the configuration

is not completely the same as in other studies, we cannot consider our result to

be on a fair direct comparison ground to previously proposed models. Moreover,

as our method rely on the conditional probability distribution of sequences, it is

expected that our result is not as good as specialized frame-based models.

52

3.4.3 Numerical Evaluation

3.4.3.1 Sequence Error Rate

Sequence Error Rate (SER) is a common metrics in evaluating sequence-to-

sequence tasks. In our experiments, each activity label is considered as a token

of the sequence. Given a sequence is made of several tokens, the metrics is derived

from Levehnstein edit distance and is calculated as

SER =
S + D + I

N
=

S + D + I

S + D + C

in which,

• S is the number of substitutions

• D is the number of deletions

• I is the number of insertions

• C is the number of correct tokens

• N is the number of tokens in the reference truth (N = S + D + C)

In other words, the sequence error rate is the number of minimum correcting

steps averaged by the sequence length. Hence, in the case of 1-length sequences,

the SER is exactly the complement of the accuracy, calculated by averaged

number of correctly predicted samples, or more concretely

Acc1−length = 1− SER1−length

3.4.3.2 Numerical Results

The results of our experiments is presented in Table 3.3 and Table 3.4.

For the interleaved segmentation experiments, we evaluate our model with var-

ied sequence lengths as discussed above. We also further our evaluation using

53

Table 3.3: Interleaved segmentation evaluation result

Model (train, val, test) Seg. length Test SER

QuartzNet5x3-1D
(0.7, 0.1, 0.2)

random 0.3248
60 seconds 0.3226

(0.6, 0.1, 0.3)
random 0.3205

60 seconds 0.3104

different data splits to examine the robustness of the model with different dis-

tribution.

As shown in Table 3.3, the results on different splitting ratios only deviate

slightly, suggesting that our model is robust and have successfully overcomed

the overfitting problem. The SERs on the order of 0.3 also suggest a positive

outlook for such a compact sequence-to-sequence model as similar behavior have

been observed in our experience with training the speech-to-text models on small

corpi. Such results suggest that the performance can easily be enhanced in future

work with better quality and quantity of data.

For the fixed time-frame segmentation experiments, we evaluate our models with

10-second frames and 3-second frames, with similar data ratio variants to assess

the model’s robustness. The results are reported in Table 3.4. To our surprise,

our model is able to reach an equivalent accuracy of up to 0.93, without any

drastic degeneration between experiments.

Table 3.4: Fixed time-frame segmentation evaluation result

Model (train, val, test) Seg. Length Test SER Equiv. Acc.

QuartzNet5x3-1D
(0.7, 0.1, 0.2)

10 seconds 0.1086 0.8914
3 seconds 0.1839 0.8161

(0.6, 0.1, 0.3)
10 seconds 0.0652 0.9348
3 seconds 0.0945 0.9055

54

Despite the result is “on par” with some previous works with overlapping samples

[99], we cannot directly compare results since we do not consider overlapped sam-

ples. Yet, the results are encouraging and suggest a positive outlook for unified

model for both task of power-saving and always-on human activity recognition

in deployment.

55

CHAPTER 4

SMART INTERACTION PLATFORM WITH SMART
WATCH

This chapter introduces authentication systems on popular computer

platforms. We discuss about system architectures and authentication

processes on operating systems. While, on web-based platforms, an

overview of popular authentication techniques is introduced. We fur-

ther introduce a simple and flexible authentication system for mul-

tiple platforms. Additionally, technical detail for implementing and

implementation detail of the system are provided including separately

modules on Windows, Linux and web-based platforms.

4.1 Authentication On Common Computer Platforms

In computing context, authentication is the process for verifying the identity of

an object, service or person. Authentication processes can be different based on

authentication scenarios, but the goal is always to know who the user is or what

the service/ object is. Authentication scenarios are various [100] and may have

specific requirements [101], so many authentication techniques are available to

support a wide range of authentication scenarios [101]. Username-Password, ID

tokens, public key certificates, and biometrics are examples for authentication

techniques [101]. As set forth by Schmidt [102] regarding the interactive modality

for interaction, we should not “blame the users” for their bad habit in keeping

credentials but rather focus on improving the modality to be effortless for them.

In this subsection, we introduce an implementation for authentication technique

using smartwatches. Our implementation can be used for authentication on fol-

lowing platforms/ environments:

• Windows operating system environments - any version released after Win-

56

dows Vista

• Linux distros such as archlinux, ubuntu, gentoo, etc.

• Web applications: Facebook, Gmail, Youtube, Amazon, etc

Before we introduce our system in this section, we would like to describe archi-

tectures of authentication system/module on Windows and Linux distros and

demonstrate step-by-step processes that Windows and Linux distros are using

to authenticate users when users perform logon process. With web applications,

we would like to introduce popular techniques are used to authenticate on web

environment.

4.1.1 Windows Credential Providers

Legacy Windows version use GINA-based architecture for authentication. GINA

(Graphical Identification and Authentication) was dropped from long-term sup-

port when Windows Vista released, making it is hard for developers to under-

stand and implement. For Microsoft, the cost to keep supporting GINA is ex-

pensive. The replacement of GINA-based architecture is the Credential Provider

model that is used on Windows Vista, Windows 7, Windows 8, Windows 8.1,

Windows 10 and the server operating systems such as Windows Server 2008,

Windows Server 2008 R2 and Windows server 2012 and later. The new creden-

tial provider reduce the develop effort, improve the way to implement and more

robust security [103].

Each credential provider is built as a dynamic-link library (DLL) file, typically

located in system32 folder on a Windows environment. A credential provider is

registered in Registry at following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

\CurrentVersion\Authentication\Credential Providers

57

4.1.1.1 Architecture

LSA

Winlogon

Applications

Credential
Manager

Credential
Proviers

Smart card logon

Logon UI Credential
UI

Credential provider
interfaces

Biometric logon

Certificate

Username
Password
logon

Redraw based on [100] in Microsoft Windows documentation

Figure 4.1: Interactive Login Architecture

The Interactive Login Architecture shows in Figure 4.1. The following list is the

components in the interactive logon architecture Microsoft, which is used for

their operating systems [100]:

• Logon UI: providers interactive UI rendering. For example: display User-

name Password, form, display credential provider tiles for users to select

the logon mechanism (smartcard, PIN, fingerprint, etc).

• Winlogon: provides interactive logon infrastructure, and instruct the lo-

gon UI to display

• Credential providers: describe and serialize the credential information

required for authentication. A credential for a user can be username and

password or credential information contained on chip of a smart card.

58

• Local Security Authority: Process logon credentials. Load authentica-

tion packages [104].

• Authentication packages: Analyze logon data [104] and communicate

with server authentication. Include 2 authentication protocols Windows

New Technology LAN Manager (NTLM) and Kerberos.

4.1.1.2 Credential Providers Authentication Process

Reproduce from Microsoft Windows documentation [105].

Figure 4.2: Credentials Processes in Windows Authentication

59

We reproduce a diagram designed by Microsoft in their official documentation in

Figure 4.2. The diagram demonstrates the credential process for their developed

operating systems.

We describe the process step-by-step as showing in the diagram as the following

9-step process:

a) Tiles list, 5 items from the top are tiles for each users on local machine and
can authenticate with local accounts. The sixth tile is a user that can be

authenticated using Microsoft account. The last tile "Please connect" is our
implemented custom credential provider tile. b) Credential provider lists, user1

can use 3 authentication techniques: the first credential provider is picture
password, the second provider is PIN-authentication, and the last provider is

password-based authentication.

Figure 4.3: Components on a Windows Logon screen

60

1. Winlogon is called when the system start up, when the user signs out of

an account, or when the user presses CTRL+ALT+DEL combination.

2. Winlogon request Credential UI for credential

3. Credential UI can request Credential Providers information via the Cre-

dential Provider Interface.

4. Information from step 3 is used to display on Logon UI

5. User selects the tile and the credential provider then inputs corresponding

credential information. A visualization for the tiles list and the credential

provider list show in Figure 4.3. For example: user selects fingerprint tile

on Logon screen, then he/she puts their finger on the fingerprint scanner.

6. The input data will be sent from Login UI to Credential UI.

7. The user’s input is processed depend on the selected Credential Provider

and prepare credentials for logon return.

8. Credential that is received from previous step is sent back to Winlogon.

9. Credential Providers is used to collect and serialize credential data and not

not enforcement mechanisms [105] So, Winlogon call LSALogonUser() that

sent serialized data LSA to do enforce security.

4.1.2 Linux Pluggable Authentication Modules

Traditionally, to implement authentication, Linux developers can use the stan-

dard libraries approach. However this approach has many limitations [106]:

• Not allow to set a system-wide standard for the encryption protocol.

• Require access to the encrypted password.

• Require to prompt logon information every single time access resource re-

quire authentication.

• Require Password-based technique. More implementation is required for

additional techniques such as biometrics, smartcard, etc.

61

To solved these limitations, the Pluggable Authentication Modules (PAM) was

proposed as a new standard in 1995 by Sun Microsystems. PAM is a system of

shared libraries for authentication (Open Software Foundation RFC 86.0 [107])

[106], it also was published at CCS ’96: Proceedings of the 3rd ACM conference

on Computer and communications security [108]. The architecture and design

of PAM provides for both pluggability and ease-of-use [108]. The idea is to

centralization module for applications and credential techniques. When an ap-

plication requires authentication, it has to be linked against PAM to verify the

user identity. That design helps developers easy to add system-wide support for

additional techniques like biometrics or ID tokens [106] and also help to stack

these techniques to create multiple user authentication techniques [108].

4.1.2.1 Architecture

PAM library

Authentication
Service
Modules

Account
Management
Modules

Session
Management
Modules

Password
Management
Modules

Other
applications

login ftp telnet

Applications

PAM
Service
Modules

pam.conf

PAM API

PAM SPI

The diagram is redrawn from [109] documentation.

Figure 4.4: PAM architecture and core components relationship

62

The diagram shows the relationship between core components in the PAM ar-

chitecture in Figure 4.4.

The architecture of the PAM framework consist of following core components :

• PAM Library - Authentication library API: a library contains PAM API

providing interfaces to applications to load and control modules. PAM ser-

vice modules communicate with PAM library through this interface [109].

• PAM Service Modules/Providers - Authentication mechanism-specific

modules: developers can write custom modules to provide authentication

techniques, and management such as account, session and password.

• Applications: an application use PAM to authentication can be called a

PAM consumer. Applications communicate with PAM library through the

PAM API [109].

• PAM Configuration: in old system PAM configuration is a text file

named pam.conf. A new version of PAM configuration is a folder named

pam.d/ containing multiple configuration files. PAM configuration files al-

low users to configure a particular service module independently with other

modules interfaces [109].

4.1.2.2 PAM configuration

PAM configuration files have 2 version: a single file named pam.conf and pam.d/

which is a folder contains configuration files for each application [110].

pam.conf - the legacy configuration file in old systems that contains configura-

tion for multiple applications in a single file and the file’s format has following

columns [110]:

• The first column is a application name.

• The second column is a module interface/ function type.

• The third column is control flag/ control argument.

63

• The fourth column is a module you want to load.

• The last column is optional, this is the module arguments if the module

requires

A pam.conf sample from Oracle’s documentation [111]:

1 #

2 # log i n s e r v i c e (e x p l i c i t because o f pam_dial_auth)

3 #

4 l o g i n auth r equ i r ed pam_dhkeys . so . 1

5 l o g i n auth r equ i r ed pam_dial_auth . so . 1

6 l o g i n auth binding pam_unix_auth . so . 1 s e rve r_po l i cy

7 l o g i n auth r equ i r ed pam_ldap . so . 1 use_f i r s t_pass

8 #

9 # r l o g i n s e r v i c e (e x p l i c i t because o f pam_rhost_auth)

10 #

11 r l o g i n auth s u f f i c i e n t pam_rhosts_auth . so . 1

12 r l o g i n auth r e q u i s i t e pam_authtok_get . so . 1

13 r l o g i n auth r equ i r ed pam_dhkeys . so . 1

14 r l o g i n auth binding pam_unix_auth . so . 1 s e rve r_po l i cy

15 r l o g i n auth r equ i r ed pam_ldap . so . 1 use_f i r s t_pass

16 . . .

In a system uses new version of PAM configuration, each application configu-

ration is placed on a single text file, and they are placed in the pam.d/ folder.

An example for list of files in pam.d/ folder on the author’s local Linux system

in Figure 4.5. The folder contains PAM configuration for basic build blocks of

a Linux system like systemd and other applications such as postgresql (database

manager), lightdm (desktop display manager). And each file’s format contains

the last 4 columns of the old pam.conf file. The following code below is an exam-

ple of a file in pam.d/ folder, this is a file named login - the configuration file of

login application:

64

Figure 4.5: List of files in pam.d/ folder on the author’s Linux system

1 #%PAM−1.0

2 auth r equ i r ed pam_securetty . so

3 auth r e q u i s i t e pam_nologin . so

4 # inc lude system−l o c a l−l o g i n c on f i gu r a t i on f i l e in pam. d/

5 auth inc lude system−l o c a l−l o g i n

6 account inc lude system−l o c a l−l o g i n

7 s e s s i o n inc lude system−l o c a l−l o g i n

Module Interfaces:

We introduce 4 types of PAM service modules showing in Figure 4.4. Therefore,

four types of PAM module interfaces are available:

• auth: use for authenticating a user.

• account: use for verifying access.

• password: use for modifying user passwords or other credentials.

• session: configure and manages user session like creating new home direc-

65

tory when an user’s account successful login for the first time.

Control Flags: Control flags help PAM to know what to do if a module run

successful or failure. The list of available control flags in PAM configuration:

• required: The result must be successful to continue. Otherwise, the process

stops and notifies a failure message to users.

• requisite: The result must be successful to continue

• sufficient: If the result is fails, it will be ignored. If the results of a module

with sufficient flag has successful result and all previous modules with

flagged required have successful results, then the user is authenticated to

the service without requiring more other results.

• optional: The result is ignored. A module with optional flagged only needs

when no other modules reference the interface for successful authentication.

An example of configuration file that we reproduce from How Linux Works (3rd

Edition) book [106]:

1 auth s u f f i c i e n t pam_rootok . so

2 auth r e q u i s i t e pam_shells . so

3 auth s u f f i c i e n t pam_unix . so

4 auth r equ i r ed pam_deny . so

We would like to describe step-by-step the authentication process of this config-

uration file. First, we describe the meaning of each module:

• pam_rootok: verify root (highest permission user in Linux system) is trying

to authentication.

• pam_shells: verify /etc/shells file is available, that is a file stores a list of

available shells in Linux system.

• pam_unix: verify the user enter correct password.

• pam_deny: this module always returns fail result.

66

A flow diagram for this example configuration in Figure 4.15. The steps of the

authentication process when the application calls for PAM library:

4.1.2.3 Authentication Process

PAM start: request to authenticate (1)

pam_rootok.so
Is root trying to authenticate?

(2)

pam_deny.so: always fail (6)

Authentication failed (7) Authentication successful (5)

pam_shells.so
does /etc/shells file exist?

(3)

pam_unix.so
 is entered password corrected?

(4)

YES

YES

YES

YES

NO

NO

Figure is redrawn from How Linux Works (3rd Edition) book [106]

Figure 4.6: PAM configuration example: Authentication process

1. PAM start when an application requests to authenticate

2. Run pam_rookok.so module and check the results

3. Run pam_shells.so module, if /etc/shells file is found and contains any

shell in it, the result is success, then move to step 3. If /etc/shells file is

missing or no shell available in the shell list, the the result is fail and move

to step 7.

4. Run pam_unix.so module. If the user enter correct password, move to step

5 else move to step 6.

5. Successful result, user is authenticated.

67

6. pam_deny.so, this module always return a fail result.

7. Authentication is failed.

4.1.3 Web-based Applications Authentication

Different web-based applications can have different authentication architecture

using different technologies and mechanism. If we ignore the technologies and

security techniques behind these applications for authentication processes and

just care about the way users input their credentials, the popular technique every

websites and web applications are using is password-based technique (do not

include web service for developers which typically using token API or not user-

friendly credential) . These websites and web applications can provide multiple

factors to improve security of their system such as:

• One-time password via email or short message service.

• Email addresses.

• Single sign-on authentication via third party account.

• Authentication with local devices.

Figures 4.7 4.8 demonstrate popular authentications on real web-based applica-

tions. In this web authentication subsection, the architecture inside a website

or a web application is an interesting topic; however it is out of the scope of our

topic. We don’t have to modify a web application authentication architecture

to do authentication process and only care about the credentials a user have to

provide if they want to access a web service, to achieve that goal by create a

web browser extension that we will introduce in next section.

4.2 Authentication System Design and Implementation

In this section, we want to introduce a design of our authentication system. The

authentication system design goal and core components implementations will be

68

dc

a b

a) An example for OTP: OTP is sent via SMS to authenticate for vaccination
registration. b) An example for OTP: twitch.tv - a video streaming service
sends an OTP via email. c) An example for third party authentication: the

first authentication option to Microsoft account login is using Github account.
d) An example for third party authentication: Tiki.vn - an e-commerce website

allows to login using Facebook, Google and Zalo account.

Figure 4.7: Web-based authentication techniques examples

discussed in next subsection.

4.2.1 Authentication Techniques

We propose a list of authentication techniques that can be used in our system.

Figure 4.9 shows techniques we focus on in the scope of this thesis. Figure 4.10

describes techniques we leave for future work.

69

ba

a) Zalo - a realtime chat application authenticate a user by scanning a QR
code using another device that already signed in. b) An email to conform the

email address.

Figure 4.8: Web-based authentication using local devices and email addresses

4.2.2 System Design

The goals for our authentication system in summary:

• Supports multiple platforms.

• Easy integrate new platform.

• Various authentication techniques can be used.

• Authentication server shares data and functionalities among platforms.

• Communication protocols can be replaced for advanced security techniques.

In order to support multiple platforms, core components are implemented using

various technologies and tools. We work with web development technology for

web platform and write modules for opensource operating system (Linux sys-

tem) and closed source operating system (Windows) that have different design

aspects. Therefore, to we have to learn the design of authentication system for

each platform in order to implement external modules for authentication on

the platforms. The communication between components in our system shows

70

b

c

a

a) Token-based authentication, a token is stored in smartwatch’s storage. b)
Movement-based authentication. c) Gesture-based authentication.

Figure 4.9: Authentication techniques

in Figure 4.11. The system aims to support new platforms without modifying

old components, so we separate our system into 2 main parts: a part for cre-

dential information collection, and a part for authentication. The first part is

implemented as an additional module for local authentication system of each

supported platform, To deploy on a new platform, we can implement a module

to collect credential information and connect it to our authentication server. The

second part is an authentication server, we separate this part sharing between

platforms. Additionally, the information stores in the database can be accessed

by multiple machines. The implementation details for each component in our

system are provided in the following subsections.

71

a

b

a) Subtle gesture-based authentication. b) Gait-based authentication.

Figure 4.10: Future work: Authentication techniques

4.2.3 Module Implementation: Custom Windows Credential Provider

In this subsection, we describe implementation detail for our Custom Credential

Provider on Windows environment.

4.2.3.1 Windows Credential Provider Interfaces Implementation

In order to build a custom Windows Credential Provider, we need to implement

two interfaces that are provided byWindows SDK. The methods of two interfaces

will be called by LogonUI and CredentialUI processes to perform authentication

with user credentials. The required interfaces to implement are :

• ICredentialProvider interface [112]: use to setup and manipulate a creden-

tial provider.

• ICredentialProviderCredential interfaces [113]: contains methods help to

handle a credential.

72

Windows CP

Web Login UI

User
Identification

Module

Credential
database

Linux PAM
User
data

A
u

th
en

ticatio
n server

Chrome
Extension

Figure 4.11: Authentication system architecture

ICredentialProviderCredential interfaces have 2 versions that the newest version

inherits all methods from the first version except one named OnCreatingWindow

() and introduces batch update of fields in LoginUI and CredentialUI [114].

In order to do automatically logon, we use the first version based on the re-

mark in WindowsSDK document that recommends the first version is used to

do automatically logon [114]. A class diagram shows the relationship between

classes in our implementation in Figure 4.12. CProvider is an implementation

for ICrentialProvider interface, while CMessageCredential and CCredential are im-

plementations for ICredentialProviderCredential interface. We also implement a

SocketListener to listen credential data and notify change on credential state.

CProvider has 2 attributes CMessageCrential and CCredential types that help

CProvider to access the instance of these 2 classes. SocketListener contains pointer

to an intance of CProvider class to access change state methods to notify up-

date in credential provider, while CProvider contains pointer to an object of

SocketListener to create that object in initialization step.

73

<<ICredentialProvider>>

CProviderSocketListener

CProvider_CreateInstance()

SetUsageScenario()

Advise()

GetCredentialCount()

GetCredentialAt()

GetFieldDescriptorCount()

GetFieldDescriptorAt()

UnAdvise()

CMessageCredential

<<ICredentialProviderCredential>>

CCredential

Initialize()

GetFieldState()

Advise()

SetSelected()

GetSerialization()

UnAdvise()

Initialize()

GetFieldState()

Advise()

SetSelected()

UnAdvise()

Initialize()

GetConnectedStatus()

ThreadProc()

Socket()

Figure 4.12: Custom Credential Provider class diagram

4.2.3.2 Authentication Process

When user select this credential provider tile - the "Please connect" tile in the

tile list on Figure 4.3, our custom credential provider will execute. The process

contains 2 separate threads:

• Thread 1: This thread has 2 state: "Initialization" state to setup CProvider

, CCredential, CMessageCredential, SocketListener instances. Thread 2 also

is started in this state. In "Initialization" state CCredential is initialized

but not be used. When the state change to "Process credential" state,

CCMessageCredential instance is released and CCredential instance is used

to process and package credential information in order to send to Local

Security Authority subsystem to enforce authentication.

• Thread 2: A socket is bind and wait for data. If the socket receives data,

then it run OnConnectStatusChanged() method of a CProvider object to notify

the state change.

74

Initialization

1) CProvider::
- CProvider_CreateInstance()
- SetUsageScenario()

2) SocketListener::Initialize()
3) CCredential::Initialize()
4) CMessageCredential::Initialize()
5) CProvider::

- Advise()
- GetCredentialCount()
- GetCredentialAt()
- GetFieldDescriptorCount()
- GetFieldDescriptorAt()

6) CMessageCredential::
- GetFieldState()
- Advise()
- SetSelected()

Process credential

8) CMessageCredential::UnAdvise()
9) CProvider::

- GetCredentialCount()
- GetCredentialAt()
- GetFieldDescriptorCount()
- GetFieldDescriptorAt()

10) CCredential::
- GetFieldState()
- Advise()
- SetSelected()
- GetSerialization()
- UnAdvise()

11) CProvider::UnAdvise()

Thread 1

7) CProvider::OnConnectStatusChanged()

Thread 2

Socket listener

 SocketListener::
- ThreadProc()
- Socket()

If socket
receives
data

start

Initialize socket

Figure 4.13: Custom Credential Provider process

In Figure 4.13, we propose a list of called methods during the whole process in

order:

1. 2 methods of CProvider are called: CProvider_CreateInstance() initializes

a CProvider instances and SetUsageScenario() determines that a user uses

logon screen.

2. SocketListener calls initialize(), It creates new thread runs threadProc()

method. In new thread, we bind a socket to listen to data and notify state

change to CProvider instance.

3. CCredential runs Initialize() to setup its instance, and do nothing in this

state.

4. CProvider runs Advise() method, this method helps CProvider to assign

ICredentialProviderEvents from Logon UI and stinlineCredential UI to its

appropriate pointer. GetCredentialCount() receives number of Credentials

available in this Credential Provider, after that it can get a Credential

by called GetCredentialAt() by passing an index. GetFieldDescriptorCount()

75

are called to receive the number of needed information for a Credential

and then it can get each information by called GetFieldDescriptorAt() by

passing the indexes.

5. CMessageCredential get information from fields to display in user tile by call-

ing GetFieldState(), after that Advise() is executed to enable synchronous

callback communication with CProvider by passing value to the pointer

IcredentialProviderCredentialEvents . The SetSelected() then called to setup

logon characteristics, in this case, it set autologon is false.

6. If socket receives data and successful verifies user identification to receive

logon credential from the Authentication Server, OnConnectStatusChanged()

method of CProvider will be called and start the next state.

7. CMessageCredential instance is no more in use, so UnAdvise() is called to

release it.

8. The credential instance is pointed by CProvider corresponding pointer has

been changed, so re-enumeration is needed.

GetCredentialCount(), GetCredentialAt(), GetFieldDescriptorCount()

and GetFieldDescriptorAt() run to perform the same task at the step 5.

9. CCredential runs a list of methods like step 6. However, when SetSelected()

runs it set the autologon characteristic is true. GetSerialization() method

package processed data and send it to Local Security Authority subsystem

to enforce authentication. UnAdvise() also is called to release the object.

10. CProvider releases itself by calling UnAdvise() method.

4.2.4 Module Implementation: Linux PAM Module

On Linux system, PAM modules are easier to build than a Credential Provider

on Windows system based on the architecture and samples of implementations

from online repository. A PAM module is built as an object file and placed in /

etc/security/ directory, then any applications that uses PAM are able to use the

76

module by modifying their configuration in /etc/pam.d. Instead of creating our

custom PAM module as an object file, we use a PAM module named pam_python

[115] that module runs the Python interpreter to allow running Python code for

writing Python PAM module. pam_python module provides a faster method to

implement PAM module, and supports importing other Python modules such

as pytorch, Tensorflow, openCV, etc. As a result, many facial recognition au-

thentication PAM module implementations use pam_python package. In order to

Custom PAM module

Custom PAM module

Custom PAM module

Custom PAM module

Custom PAM module

Custom PAM module
Applications/
Login screen Custom PAM module

Authentication server/
Local Authentication

module

1

2

3

45

Figure 4.14: Custom PAM module process

perform authentication, we implement pam_sm_authenticate() method provided

by pam_python to wrap the actual method in PAM library. We create a socket

listener inside the method for receiving credential data and a connection to

authentication server for user identification. Additionally, we can easy run a

identification model into this PAM module to authenticate users without au-

thentication server connection when multiple platforms authentication does not

require. The process of the PAM module shows in Figure 4.14, the process is

77

run following these steps:

1. Applications or login screen need authenticate a user and calls pam_start()

to initialize a PAM transaction. If our custom PAM module is configured

for the applications or login screen, then it must be called.

2. Module’s socket receive data from the user.

3. PAM module sends received data from to authentication server or a local

authentication module to identify the user.

4. Authentication server/local authentication module send the identification

result back to custom PAM module.

5. PAMmodule sent the result back to requesting Applications or login screen.

4.2.5 Module Implementation: Google Chrome Extension

We build a Google Chrome extension to support autologin for websites that uses

password-based authentication technique. When a website supports login using

password-based authentication, they often has a login page. A login page has

a form containing username/email filed, password field and a submit button.

We can login by automatically filling the form (autofill) and click the button,

so if we can autofill the form and simulate a button click event, we can login

automatically.

An implementation for a Google Chrome Extension uses web development tech-

nologies such as HTML, CSS and JavaScript [116]. An Chrome Extension project

contains a manifest and source code. The manifest file is JSON (JavaScript Ob-

ject Notation) format file for specifying characteristics of the extension and

source code to implement extensions’ functionality.

Our extension contains 4 JavaScript files:

• background.js: this script executes as a service worker - a background pro-

cess. The process use to call script in content scripts to interact with web-

78

site’s content.

• urlsupport.js: this process verifies an url is supported. If that url is sup-

ported, the process returns names of fields and button of this url’s login

form, these information can be used to access HTML elements in JavaScript

code through Document Object Model (DOM) tree .

• getprofile.js: this process gets an account corresponding to a profile and

current url.

• autofill.js: this content script uses returned information from urlsupport

.js process and getprofile.js process to access HTML elements, fill infor-

mation and simulate button click event.

79

Content scripts

urlsupport.js

getprofile.js

autofill.js

Service worker

background.js

background.js

background.js
Document Object
Model (DOM)

Database

background.js

1

23

4

5

6

7

89

Figure 4.15: Extension execution process

The process of the extension:

1. Service worker background.js requests active tab url and execute urlsupport

.js.

2. urlsupport.js uses the url to query in the database. If the url is found in

the database means it is supported. Information that is received from the

database is packaged and send within a message to service worker.

3. background.js after receives the message from urlsupport.js will call

getprofile.js script.

4. getprofile.js script queries the current user data from the database. The

current user can reuse recent profile from Windows logon or PAM authen-

tication step instead of performing another authentication. User data of

the current url is sent to background.js.

5. background.js receives the message from getprofile.js process data from

getprofile.js and urlsupport.js and execute autofill.js script.

6. autofill.js uses information from previous step to access the login form

using DOM. After these elements are received, profile information is used

to fill in corresponding fields and create a submit event.

80

4.2.6 Module Implementation: Authentication server

The authentication server helps query data in database and provide an inter-

face to interact with credential providers and authentication modules that are

introduced in previous subsections.

The server contains 2 components. The first component is a Python application

that sends credential information from credential provider to user identification

module and provide communicate to database service. While the second com-

ponents is a REST API that supports database operations and provides https

protocols for security connection. We implement the second component using

Nodejs [117] - an opensource JavaScript backend runtime environment. The fol-

lowing packages and libraries are used:

• Express [118]: a lightweight framework to create web application or ap-

plication programming interfaces.

• Mongoose [119]: a package helps Nodejs applications to use MongoDB.

This package support object modeling and asynchronous.

• cors [120]: a middleware that can be used with Express to enable Cross-

Origin Resource Sharing (CORS) - an HTTP-header mechanism which

enables controlled access to resources located outside of a given domain

[121].

• CryptoJS [122]: a package contains secure cryptographic algorithm im-

plementations. We use for encrypting usernames, passwords and other cre-

dential information before store them in database.

• jsonwebtoken [123]: implementation of Json Web Token (RFC7519) [124].

Enable JWTToken credential to access URLs that require. We use token

credential to guarantee only User Identification Module can request for

credential data on database.

81

By separating into 2 parts, the Python component can be either deployed within

the REST API as a part of authentication server or as a system service on

operating system. To deploy this component as a system service, we can register

the Python component as a system service using systemd [125] - the basic service

manager on Linux systems or NSSM (the Non-Sucking Service Manager) - third

party service helper [126] on Windows systems. The REST API component can

be placed on users’ local machine or can be deployed as a server that can be

accessed by multiple machines to share credential information among them.

4.2.7 Module Implementation: Database Design

To quickly implement the Nodejs server, we use MongoDB is a cross platform

document-oriented database to be a credential database. This database manager

has well support package that is Mongoose. A database diagram shows in Figure

4.16.

SupportWebsite

Id: unique

url

name_of_id_field

name_of_password_field

name_of_form

name_of_button

Id_find_by

pass_find_by

form_find_by

button_find_by

submit_type

Profile

Id: unique

username

password

credential_information

WebAccount

id: unique

web_id

password

profile_id

username

Figure 4.16: Database diagram

82

The database is designed to support multiple platform, so it stores informa-

tion that supports 3 platforms we concern and other platforms in future. The

database contains 3 schemas which maps to MongoDB as 3 collections:

• Profile: for each profile is stored, an unique id that is a random unique

256 bytes string. The next 3 values are optional, they can be used depend

on the way we implement the user identification module. For example, we

can store credential_information which is an object value as a token string.

If the platform does not support custom authentication techniques and

support password-based technique only, we can store username and password

, and pass them to the platform’s build-in authentication after successfully

authenticate using the user identification module. We keep in mind that

the stored username and password are also encrypted.

• WebAccount: an user might need authenticate one time, then they can use

autofill feature of the extension we propose. This collection stores credential

information of web accounts linking with user profiles.

• SupportWebsite: this collection stores urls of login pages supported by the

extension. This collection requires augmentation for wider range of sup-

ported websites. name_of_* attributes are used to determine the name of

appropriate elements in DOM tree. Attributes that contains *_find_by spec-

ify corresponding components can be find by name or id through DOM tree,

The datatype of these values are string type. The submit_type has a value

of either true or false, if the value is false, then the form is submit by a

button click event, else the form is submit by a submit event.

83

CHAPTER 5

CONCLUSION

This chapter presents the conclusions of our thesis. We review the

results for each objective. Additionally, we propose sample usage sce-

narios that can be applied with our technique. In final section, we

propose a short proposal of future work.

5.1 Main results

Off-the-shelf wearable devices can be made useful for smart environment interac-

tion, so that devices such as smartwatches can be used as an input for computer

systems or electronics systems. Additionally, these off-the-shelf devices mostly

provide programming interfaces like Android SDK in order to create useful appli-

cations to increase usability for the devices. To create applications in user-space

for smartwatches that provides more features; however, applications are limited

due to resource access limitation for power saving purpose. To overcome the lim-

itation from stock devices, we learn that off-the-shelf devices can be modified

to achieve higher sensor sampling rate, the modification can be easier in some

devices and some devices would cost more effort to do so. These modifications

can make inertial sensors of smartwatches reach the highest rate possible, yet

at the cost of consuming more power than usual. With higher information res-

olution, signals sampled at higher sampling rate embed richer information and

can be used for understanding movements, activities, and gestures – even very

subtle ones such as wrist movements, finger movements, etc.

In order to process and understand these signal sequences, we introduce an

approach inspired on speech recognition domain, the approach can be applied for

a single frame (short sequence) case and also understand a continuous sequence

of activity. Given devices available to the access of the authors, a Moto360v2

84

with low sampling rate and a LG G Watch W100 with higher sample rate, we

aim to perform experiment and deployment in both two kind of frequencies.

Due to the COVID-19 pandemic, unfortunately, the device with higher sampling

rate that we aim to be used for collecting high sampling rate data and deploy

our high sampling rate models cannot not arrive in time. Thus, such experiments

can not be done within the scope of this thesis. Yet, it is definitely a part of

future work for this continuing project.

The interaction techniques from our work can be used for interaction with not

only computers but also various devices such as electronics (lambs, fans, tele-

visions, etc). The main interaction scenarios we introduce in this thesis is au-

thentication on computer platforms with smartwatches. The system we have

implemented for the scenarios is simple and flexible that can be integrates on

various platforms. To demonstrate, we learn to understand the characteristics of

authentication system on popular platforms that are Windows, Linux and web-

based platforms. Based on that knowledge, we integrate 3 modules in order to

support the 3 platforms separately with using recommended ways to implement.

Due to the long-term quarantine as an objective condition, some significant

tasks are still remaining by the requirement on devices and people such as high

sample rate model deployment, build more scenarios for user study, and user

study performing. These remaining tasks are added into our future work.

5.2 Samples of Usage Scenarios

The technique using smartwatches that we propose in the scope of this thesis

can be used in scenarios as follow:

• Use as an authentication technique: movement-based password, gait-based

authentication.

85

• Use as a remote control for electronics: lambs, fans, televisions, projectors,

or other electronics systems.

• Use as an optional freehand input device for computer and other systems.

• Collect activities data, collected data can be used for activity tracking and

life logging.

• User interfaces of existing applications can also be re-designed to support

the technique.

Usage scenarios for high sampling rate sensor signals are not listed in this section.

By increasing sampling rate of the devices, the information from inertial sensors

can understand minor movements and further acoustic information that support

a wider range usage scenarios and applications.

5.3 Future Work

Due to challenges occur during conducting this thesis, various experiments and

usage scenarios are left to our future work. With the goal of proposing useful and

enjoyable interactive modalities, we aim to continue evaluating and improving

our signal processing approach for high sampling rate signals, as well as consid-

ering the performance in-deployment across different smart watch models. Our

previous works on information retrieval using representation learning embed-

dings [127, 128, 129] also suggest a promising outlook in a smart authentication

system that employ only natural and unobtrusive human interaction.

Following the optimistic outlook is our concerns to verify comfort and enjoyment

of proposed techniques. We acknowledge that user studies need to be conducted

to explore suitable of movements and gestures for different scenarios, as well as

to assess the usability, comfort, and enjoyment of proposed interactions with

respect to the users’ perspective. We aim to explore many types of movements

86

and gestures, yet with an emphasis on finger movements, because they are more

subtle, implicit, and entails less obstruction from our normal activities.

Finally, as the world faces the third wave of COVID and Vietnam faces the

all-time-high death toll, we plan to a investigate an alternative COVID-relief

solution right after our thesis defence. Particularly, we are looking to apply bioa-

coustics sensing to smartphones as an alternative COVID-19 screening technique

based on the capability of sensing bioacoustics signal, i.e, vibrations propagated

through the human body. Despite being subtle, these signals are much less prone

to ambient noise and might be able to overcome challenges in audio-based screen-

ing efforts that are being investigated by many Vietnamese developers.

87

REFERENCES

[1] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into

deep learning. arXiv preprint arXiv:2106.11342, 2021.

[2] Awni Hannun. Sequence modeling with ctc. Distill, 2017. doi: 10.23915/

distill.00008. https://distill.pub/2017/ctc.

[3] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Olek-

sii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang.

Quartznet: Deep Automatic Speech Recognition with 1D Time-Channel Sep-

arable Convolutions. In ICASSP 2020 - 2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6124–6128,

Barcelona, Spain, May 2020. IEEE. ISBN 978-1-5090-6631-5. doi: 10/ghbz2x.

URL https://ieeexplore.ieee.org/document/9053889/.

[4] Mark Weiser. The Computer for the 21st Century. SCIENTIFIC

AMERICAN, page 12, 1991.

[5] Gordon E Moore. Cramming more components onto integrated circuits.

Proceedings of the IEEE, 86(1):82–85, 1998.

[6] Gregory D. Abowd. Beyond Weiser: From Ubiquitous to Collective Comput-

ing. Computer, 49(1):17–23, January 2016. ISSN 0018-9162. doi: 10/gf2khx.

URL http://ieeexplore.ieee.org/document/7383147/.

[7] Silvia Liberata Ullo and G. R. Sinha. Advances in Smart Environment Mon-

itoring Systems Using IoT and Sensors. Sensors, 20(11):3113, May 2020.

88

https://ieeexplore.ieee.org/document/9053889/
http://ieeexplore.ieee.org/document/7383147/

ISSN 1424-8220. doi: 10/gmc67s. URL https://www.mdpi.com/1424-8220/

20/11/3113.

[8] Partha P Ray. Home health hub internet of things (h 3 iot): An architectural

framework for monitoring health of elderly people. In 2014 International

Conference on Science Engineering and Management Research (ICSEMR),

pages 1–3. IEEE, 2014.

[9] Partha Pratim Ray. A survey on internet of things architectures. Journal

of King Saud University-Computer and Information Sciences, 30(3):291–319,

2018.

[10] Rob Dunne, Tim Morris, and Simon Harper. A Survey of Ambient In-

telligence. ACM Computing Surveys, 54(4):1–27, July 2021. ISSN 0360-

0300, 1557-7341. doi: 10/gk55v5. URL https://dl.acm.org/doi/10.1145/

3447242.

[11] Naeem Iqbal, Shabir Ahmad, Do Hyeun Kim, et al. Health monitoring sys-

tem for elderly patients using intelligent task mapping mechanism in closed

loop healthcare environment. Symmetry, 13(2):357, 2021.

[12] Xueyi Wang, Joshua Ellul, and George Azzopardi. Elderly fall detection

systems: A literature survey. Frontiers in Robotics and AI, 7:71, 2020.

[13] Man credits this apple watch feature for helping save his fa-

ther. https://www.cbsnews.com/news/apple-watch-saves-life-hard-

fall-apple-watch-series-4-falling-emergency-bob-burdett/.

[14] Apple watch calls 911 as middletown man falls down cliff. https:

//newjersey.news12.com/apple-watch-calls-911-as-middletown-man-

falls-down-cliff-41211528.

89

https://www.mdpi.com/1424-8220/20/11/3113
https://www.mdpi.com/1424-8220/20/11/3113
https://dl.acm.org/doi/10.1145/3447242
https://dl.acm.org/doi/10.1145/3447242
https://www.cbsnews.com/news/apple-watch-saves-life-hard-fall-apple-watch-series-4-falling-emergency-bob-burdett/
https://www.cbsnews.com/news/apple-watch-saves-life-hard-fall-apple-watch-series-4-falling-emergency-bob-burdett/
https://newjersey.news12.com/apple-watch-calls-911-as-middletown-man-falls-down-cliff-41211528
https://newjersey.news12.com/apple-watch-calls-911-as-middletown-man-falls-down-cliff-41211528
https://newjersey.news12.com/apple-watch-calls-911-as-middletown-man-falls-down-cliff-41211528

[15] Smartwatch saved toralv (norwegian). https://www.nrk.no/norge/

smartklokken-reddet-toralv-lordag-natt-1.14412266.

[16] Brad A. Myers. A brief history of human-computer interaction tech-

nology. Interactions, 5(2):44–54, March 1998. ISSN 1072-5520, 1558-

3449. doi: 10.1145/274430.274436. URL https://dl.acm.org/doi/10.1145/

274430.274436.

[17] Gregory D. Abowd. What next, ubicomp?: celebrating an intellectual dis-

appearing act. In Proceedings of the 2012 ACM Conference on Ubiquitous

Computing - UbiComp ’12, page 31, Pittsburgh, Pennsylvania, 2012. ACM

Press. ISBN 978-1-4503-1224-0. doi: 10/gj2qzj. URL http://dl.acm.org/

citation.cfm?doid=2370216.2370222.

[18] Google Scholar Metrics. https://scholar.google.com/

citations?view_op=top_venues, . Accessed: 2021-08.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of Deep Bidirectional Transformers for Language Un-

derstanding. arXiv:1810.04805 [cs], May 2019. URL http://arxiv.org/

abs/1810.04805. arXiv: 1810.04805.

[20] Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A Pretrained Language

Model for Scientific Text. arXiv:1903.10676 [cs], September 2019. URL

http://arxiv.org/abs/1903.10676. arXiv: 1903.10676.

[21] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. ALBERT: A Lite BERT for Self-supervised

Learning of Language Representations. arXiv:1909.11942 [cs], February 2020.

URL http://arxiv.org/abs/1909.11942. arXiv: 1909.11942.

[22] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and

90

https://www.nrk.no/norge/smartklokken-reddet-toralv-lordag-natt-1.14412266
https://www.nrk.no/norge/smartklokken-reddet-toralv-lordag-natt-1.14412266
https://dl.acm.org/doi/10.1145/274430.274436
https://dl.acm.org/doi/10.1145/274430.274436
http://dl.acm.org/citation.cfm?doid=2370216.2370222
http://dl.acm.org/citation.cfm?doid=2370216.2370222
https://scholar.google.com/citations?view_op=top_venues
https://scholar.google.com/citations?view_op=top_venues
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/1909.11942

lighter. arXiv:1910.01108 [cs], February 2020. URL http://arxiv.org/abs/

1910.01108. arXiv: 1910.01108.

[23] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael

Auli. wav2vec: Unsupervised Pre-Training for Speech Recognition. In

Interspeech 2019, pages 3465–3469. ISCA, September 2019. doi: 10/

ghpk8x. URL http://www.isca-speech.org/archive/Interspeech_2019/

abstracts/1873.html.

[24] Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-

Supervised Learning of Discrete Speech Representations. In Proceedings of

the 8th International Conference on Learning Representations, April 2020.

URL https://iclr.cc/virtual_2020/poster_rylwJxrYDS.html.

[25] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.

wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Represen-

tations. In Advances in Neural Information Processing Systems, volume 33,

pages 12449–12460, 2020. URL https://proceedings.neurips.cc/paper/

2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html.

[26] Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed,

and Michael Auli. Unsupervised Cross-lingual Representation Learning for

Speech Recognition. arXiv:2006.13979 [cs, eess], December 2020. URL http:

//arxiv.org/abs/2006.13979. arXiv: 2006.13979.

[27] Tae Jin Park, Naoyuki Kanda, Dimitrios Dimitriadis, Kyu J. Han, Shinji

Watanabe, and Shrikanth Narayanan. A Review of Speaker Diarization:

Recent Advances with Deep Learning. arXiv:2101.09624 [cs, eess], January

2021. URL http://arxiv.org/abs/2101.09624. arXiv: 2101.09624.

[28] Xian Shi, Fan Yu, Yizhou Lu, Yuhao Liang, Qiangze Feng, Daliang Wang,

Yanmin Qian, and Lei Xie. The accented english speech recognition challenge

91

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://www.isca-speech.org/archive/Interspeech_2019/abstracts/1873.html
http://www.isca-speech.org/archive/Interspeech_2019/abstracts/1873.html
https://iclr.cc/virtual_2020/poster_rylwJxrYDS.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2101.09624

2020: open datasets, tracks, baselines, results and methods. In ICASSP

2021-2021 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6918–6922. IEEE, 2021.

[29] Siyuan Feng, Olya Kudina, Bence Mark Halpern, and Odette Scharen-

borg. Quantifying bias in automatic speech recognition. arXiv preprint

arXiv:2103.15122, 2021.

[30] Josephine Lau, Benjamin Zimmerman, and Florian Schaub. Alexa, are you

listening? privacy perceptions, concerns and privacy-seeking behaviors with

smart speakers. Proceedings of the ACM on Human-Computer Interaction,

2(CSCW):1–31, 2018.

[31] Yue Huang, Borke Obada-Obieh, and Konstantin Beznosov. Amazon vs.

my brother: How users of shared smart speakers perceive and cope with

privacy risks. In Proceedings of the 2020 CHI Conference on Human Factors

in Computing Systems, pages 1–13, 2020.

[32] Yongsen Ma, Gang Zhou, and Shuangquan Wang. WiFi Sensing with

Channel State Information: A Survey. ACM Computing Surveys, 52(3):

1–36, July 2019. ISSN 0360-0300, 1557-7341. doi: 10.1145/3310194. URL

https://dl.acm.org/doi/10.1145/3310194.

[33] Siamak Yousefi, Hirokazu Narui, Sankalp Dayal, Stefano Ermon, and

Shahrokh Valaee. A Survey on Behavior Recognition Using WiFi Chan-

nel State Information. IEEE Communications Magazine, 55(10):98–104,

October 2017. ISSN 0163-6804. doi: 10.1109/MCOM.2017.1700082. URL

http://ieeexplore.ieee.org/document/8067693/.

[34] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C.

Miller. Smart Homes that Monitor Breathing and Heart Rate. In Proceedings

of the 33rd Annual ACM Conference on Human Factors in Computing

92

https://dl.acm.org/doi/10.1145/3310194
http://ieeexplore.ieee.org/document/8067693/

Systems, pages 837–846, Seoul Republic of Korea, April 2015. ACM. ISBN

978-1-4503-3145-6. doi: 10/ggsrdr. URL https://dl.acm.org/doi/10.1145/

2702123.2702200.

[35] Mingmin Zhao, Fadel Adib, and Dina Katabi. Emotion recognition using

wireless signals. In Proceedings of the 22nd Annual International Conference

on Mobile Computing and Networking, pages 95–108, 2016.

[36] Tuan-Duy H. Nguyen and Huu-Nghia H. Nguyen. Towards a robust wifi-

based fall detection with adversarial data augmentation. In 2020 54th Annual

Conference on Information Sciences and Systems (CISS), pages 1–6, 2020.

doi: 10.1109/CISS48834.2020.1570617398.

[37] E.O. Thorp. The invention of the first wearable computer. In

Digest of Papers. Second International Symposium on Wearable Computers

(Cat. No.98EX215), pages 4–8, Pittsburgh, PA, USA, 1998. IEEE Com-

put. Soc. ISBN 978-0-8186-9074-7. doi: 10/ffqq8z. URL http://

ieeexplore.ieee.org/document/729523/.

[38] Sheikh M. A. Iqbal, Imadeldin Mahgoub, E Du, Mary Ann Leavitt, and

Waseem Asghar. Advances in healthcare wearable devices. npj Flexible

Electronics, 5(1):9, December 2021. ISSN 2397-4621. doi: 10/gjtq2w. URL

http://www.nature.com/articles/s41528-021-00107-x.

[39] Mengjie Zhang, Rehan Saeed, Safwan Saeed, Stevan Stankovski, and Xi-

aoshuan Zhang. Wearable Technology and Applications: A Systematic Re-

view. page 13.

[40] Aleksandr Ometov, Viktoriia Shubina, Lucie Klus, Justyna Skibińska, Salwa

Saafi, Pavel Pascacio, Laura Flueratoru, Darwin Quezada Gaibor, Nadezhda

Chukhno, Olga Chukhno, Asad Ali, Asma Channa, Ekaterina Svertoka,

93

https://dl.acm.org/doi/10.1145/2702123.2702200
https://dl.acm.org/doi/10.1145/2702123.2702200
http://ieeexplore.ieee.org/document/729523/
http://ieeexplore.ieee.org/document/729523/
http://www.nature.com/articles/s41528-021-00107-x

Waleed Bin Qaim, Raúl Casanova-Marqués, Sylvia Holcer, Joaquín Torres-

Sospedra, Sven Casteleyn, Giuseppe Ruggeri, Giuseppe Araniti, Radim

Burget, Jiri Hosek, and Elena Simona Lohan. A Survey on Wearable

Technology: History, State-of-the-Art and Current Challenges. Computer

Networks, 193:108074, July 2021. ISSN 13891286. doi: 10/gjptzc. URL

https://linkinghub.elsevier.com/retrieve/pii/S1389128621001651.

[41] Eduardo Teixeira, Hélder Fonseca, Florêncio Diniz-Sousa, Lucas Veras,

Giorjines Boppre, José Oliveira, Diogo Pinto, Alberto Jorge Alves, Ana Bar-

bosa, Romeu Mendes, and Inês Marques-Aleixo. Wearable Devices for Physi-

cal Activity and Healthcare Monitoring in Elderly People: A Critical Review.

Geriatrics, 6(2):38, April 2021. ISSN 2308-3417. doi: 10/gmcqhw. URL

https://www.mdpi.com/2308-3417/6/2/38.

[42] James D. Brandt, Harvey B. DuBiner, Robert Benza, Kenneth N. Sall,

Gary A. Walker, Charles P. Semba, Donald Budenz, Douglas Day, Brian

Flowers, Steven Lee, Quang Nguyen, and David Wirta. Long-term

Safety and Efficacy of a Sustained-Release Bimatoprost Ocular Ring.

Ophthalmology, 124(10):1565–1566, October 2017. ISSN 01616420. doi:

10.1016/j.ophtha.2017.04.022. URL https://linkinghub.elsevier.com/

retrieve/pii/S0161642017303883.

[43] Jong Wook Kim, Jong Hyun Lim, Su Mee Moon, and Beakcheol Jang. Col-

lecting Health Lifelog Data From Smartwatch Users in a Privacy-Preserving

Manner. IEEE Transactions on Consumer Electronics, 65(3):369–378, Au-

gust 2019. ISSN 0098-3063, 1558-4127. doi: 10.1109/TCE.2019.2924466.

URL https://ieeexplore.ieee.org/document/8744248/.

[44] Shiqiang Liu, Junchang Zhang, Yuzhong Zhang, and Rong Zhu. A wearable

motion capture device able to detect dynamic motion of human limbs. Nature

94

https://linkinghub.elsevier.com/retrieve/pii/S1389128621001651
https://www.mdpi.com/2308-3417/6/2/38
https://linkinghub.elsevier.com/retrieve/pii/S0161642017303883
https://linkinghub.elsevier.com/retrieve/pii/S0161642017303883
https://ieeexplore.ieee.org/document/8744248/

Communications, 11(1):5615, December 2020. ISSN 2041-1723. doi: 10/

gmcqhv. URL http://www.nature.com/articles/s41467-020-19424-2.

[45] Matt Bower and Daniel Sturman. What are the educational affordances of

wearable technologies? Computers & Education, 88:343–353, October 2015.

ISSN 03601315. doi: 10/f7wnxw. URL https://linkinghub.elsevier.com/

retrieve/pii/S036013151530018X.

[46] Shubham Garg and Pradumn Joshi. Integrated Wearable Police Module

for Fine Management and Law Enforcement. In 2014 Texas Instruments

India Educators’ Conference (TIIEC), pages 138–143, Bangalore, India, 2014.

IEEE. ISBN 978-1-4673-8922-8. doi: 10.1109/TIIEC.2014.031. URL http:

//ieeexplore.ieee.org/document/7899224/.

[47] Haruka Murakami, Ryoko Kawakami, Satoshi Nakae, Yosuke Yamada,

Yoshio Nakata, Kazunori Ohkawara, Hiroyuki Sasai, Kazuko Ishikawa-

Takata, Shigeho Tanaka, and Motohiko Miyachi. Accuracy of 12 wear-

able devices for estimating physical activity energy expenditure using a

metabolic chamber and the doubly labeled water method: Validation study.

JMIR Mhealth Uhealth, 7(8):e13938, Aug 2019. ISSN 2291-5222. doi:

10.2196/13938. URL https://mhealth.jmir.org/2019/8/e13938/.

[48] Kashif Saleem, Basit Shahzad, Mehmet A. Orgun, Jalal Al-Muhtadi,

Joel J. P. C. Rodrigues, and Mohammed Zakariah. Design and deploy-

ment challenges in immersive and wearable technologies. Behaviour &

Information Technology, 36(7):687–698, July 2017. ISSN 0144-929X, 1362-

3001. doi: 10/gmcwk2. URL https://www.tandfonline.com/doi/full/

10.1080/0144929X.2016.1275808.

[49] Neamah Al-Naffakh, Nathan Clarke, and Fudong Li. Continuous User

Authentication Using Smartwatch Motion Sensor Data. In Nurit Gal-Oz

95

http://www.nature.com/articles/s41467-020-19424-2
https://linkinghub.elsevier.com/retrieve/pii/S036013151530018X
https://linkinghub.elsevier.com/retrieve/pii/S036013151530018X
http://ieeexplore.ieee.org/document/7899224/
http://ieeexplore.ieee.org/document/7899224/
https://mhealth.jmir.org/2019/8/e13938/
https://www.tandfonline.com/doi/full/10.1080/0144929X.2016.1275808
https://www.tandfonline.com/doi/full/10.1080/0144929X.2016.1275808

and Peter R. Lewis, editors, Trust Management XII, volume 528, pages

15–28. Springer International Publishing, Cham, 2018. ISBN 978-3-319-

95275-8 978-3-319-95276-5. doi: 10.1007/978-3-319-95276-5_2. URL http:

//link.springer.com/10.1007/978-3-319-95276-5_2. Series Title: IFIP

Advances in Information and Communication Technology.

[50] Krzysztof Pietroszek, Liudmila Tahai, James R. Wallace, and Edward Lank.

Watchcasting: Freehand 3D interaction with off-the-shelf smartwatch. In

2017 IEEE Symposium on 3D User Interfaces (3DUI), pages 172–175, Los

Angeles, CA, USA, 2017. IEEE. ISBN 978-1-5090-6716-9. doi: 10/gjbz54.

URL http://ieeexplore.ieee.org/document/7893335/.

[51] Saisakul Chernbumroong, Anthony S Atkins, and Hongnian Yu. Activ-

ity classification using a single wrist-worn accelerometer. In 2011 5th

International Conference on Software, Knowledge Information, Industrial

Management and Applications (SKIMA) Proceedings, pages 1–6. IEEE,

2011.

[52] Philipp M Scholl and Kristof Van Laerhoven. A feasibility study of wrist-

worn accelerometer based detection of smoking habits. In 2012 Sixth

International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing, pages 886–891. IEEE, 2012.

[53] Fernando Ginez Da Silva and Elisabete Galeazzo. Accelerometer based in-

telligent system for human movement recognition. In 5th IEEE International

Workshop on Advances in Sensors and Interfaces IWASI, pages 20–24. IEEE,

2013.

[54] Farzin Dadashi, Arash Arami, Florent Crettenand, Gregoire P Millet, John

Komar, Ludovic Seifert, and Kamiar Aminian. A hidden markov model of the

breaststroke swimming temporal phases using wearable inertial measurement

96

http://link.springer.com/10.1007/978-3-319-95276-5_2
http://link.springer.com/10.1007/978-3-319-95276-5_2
http://ieeexplore.ieee.org/document/7893335/

units. In 2013 IEEE international conference on body sensor networks, pages

1–6. Ieee, 2013.

[55] Muhammad Shoaib, Stephan Bosch, Hans Scholten, Paul JM Havinga, and

Ozlem Durmaz Incel. Towards detection of bad habits by fusing smart-

phone and smartwatch sensors. In 2015 IEEE International Conference on

Pervasive Computing and Communication Workshops (PerCom Workshops),

pages 591–596. IEEE, 2015.

[56] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. Mole: Mo-

tion leaks through smartwatch sensors. In Proceedings of the 21st Annual

International Conference on Mobile Computing and Networking, pages 155–

166, 2015.

[57] Serkan Balli, Ensar Arif Sağbas, and T Hokimoto. The usage of statistical

learning methods on wearable devices and a case study: activity recognition

on smartwatches. Advances in statistical methodologies and their application

to real problems, pages 259–277, 2017.

[58] Gary M. Weiss, Jessica L. Timko, Catherine M. Gallagher, Kenichi Yoneda,

and Andrew J. Schreiber. Smartwatch-based activity recognition: A ma-

chine learning approach. In 2016 IEEE-EMBS International Conference on

Biomedical and Health Informatics (BHI), pages 426–429, Las Vegas, NV,

USA, February 2016. IEEE. ISBN 978-1-5090-2455-1. doi: 10/gmcqh3. URL

http://ieeexplore.ieee.org/document/7455925/.

[59] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow,

Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen.

Smart Devices are Different: Assessing and MitigatingMobile Sensing Het-

erogeneities for Activity Recognition. In Proceedings of the 13th ACM

Conference on Embedded Networked Sensor Systems, pages 127–140, Seoul

97

http://ieeexplore.ieee.org/document/7455925/

South Korea, November 2015. ACM. ISBN 978-1-4503-3631-4. doi: 10/bcgb.

URL https://dl.acm.org/doi/10.1145/2809695.2809718.

[60] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. Recognizing De-

tailed Human Context in the Wild from Smartphones and Smartwatches.

IEEE Pervasive Computing, 16(4):62–74, October 2017. ISSN 1536-1268.

doi: 10/gk7smc. URL http://ieeexplore.ieee.org/document/8090454/.

[61] Yonatan Vaizman, Katherine Ellis, Gert Lanckriet, and Nadir Weibel.

ExtraSensory App: Data Collection In-the-Wild with Rich User Interface

to Self-Report Behavior. In Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems, pages 1–12, Montreal QC Canada,

April 2018. ACM. ISBN 978-1-4503-5620-6. doi: 10/ghnn6s. URL https:

//dl.acm.org/doi/10.1145/3173574.3174128.

[62] Yonatan Vaizman. Behavioral Context Recognition In the Wild. PhD thesis,

UC San Diego, 2018.

[63] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Ab-

delzaher. DeepSense: A Unified Deep Learning Framework for Time-Series

Mobile Sensing Data Processing. In Proceedings of the 26th International

Conference on World Wide Web, pages 351–360, Perth Australia, April 2017.

International World Wide Web Conferences Steering Committee. ISBN 978-

1-4503-4913-0. doi: 10/gfx3gp. URL https://dl.acm.org/doi/10.1145/

3038912.3052577.

[64] Serkan Balli, Ensar Arif Sağbaş, and Musa Peker. Human activity recog-

nition from smart watch sensor data using a hybrid of principal compo-

nent analysis and random forest algorithm. Measurement and Control, 52

(1-2):37–45, January 2019. ISSN 0020-2940. doi: 10/ggft3r. URL http:

//journals.sagepub.com/doi/10.1177/0020294018813692.

98

https://dl.acm.org/doi/10.1145/2809695.2809718
http://ieeexplore.ieee.org/document/8090454/
https://dl.acm.org/doi/10.1145/3173574.3174128
https://dl.acm.org/doi/10.1145/3173574.3174128
https://dl.acm.org/doi/10.1145/3038912.3052577
https://dl.acm.org/doi/10.1145/3038912.3052577
http://journals.sagepub.com/doi/10.1177/0020294018813692
http://journals.sagepub.com/doi/10.1177/0020294018813692

[65] Samaher Al-Janabi and Ali Hamza Salman. Sensitive integration of

multilevel optimization model in human activity recognition for smart-

phone and smartwatch applications. Big Data Mining and Analytics, 4

(2):124–138, June 2021. ISSN 2096-0654. doi: 10/gmd9t6. URL https:

//ieeexplore.ieee.org/document/9343922/.

[66] Florenc Demrozi, Cristian Turetta, and Graziano Pravadelli. B-HAR: an

open-source baseline framework for in depth study of human activity recog-

nition datasets and workflows. arXiv:2101.10870 [cs, eess], January 2021.

URL http://arxiv.org/abs/2101.10870. arXiv: 2101.10870.

[67] Yujiao Hao, Rong Zheng, and Boyu Wang. Invariant Feature Learning for

Sensor-based Human Activity Recognition. IEEE Transactions on Mobile

Computing, pages 1–1, 2021. ISSN 1536-1233, 1558-0660, 2161-9875. doi:

10/gmhhrz. URL https://ieeexplore.ieee.org/document/9372813/.

[68] Satya P. Singh, Madan Kumar Sharma, Aime Lay-Ekuakille, Deepak Gang-

war, and Sukrit Gupta. Deep ConvLSTMWith Self-Attention for Human Ac-

tivity Decoding Using Wearable Sensors. IEEE Sensors Journal, 21(6):8575–

8582, March 2021. ISSN 1530-437X, 1558-1748, 2379-9153. doi: 10/gjgc7w.

URL https://ieeexplore.ieee.org/document/9296308/.

[69] Ghanapriya Singh, Mahesh Chowdhary, Arun Kumar, and Rajendar Bahl.

A Personalized Classifier for Human Motion Activities With Semi-Supervised

Learning. IEEE Transactions on Consumer Electronics, 66(4):346–355,

November 2020. ISSN 0098-3063, 1558-4127. doi: 10/gmfcnn. URL https:

//ieeexplore.ieee.org/document/9249433/.

[70] Sakorn Mekruksavanich and Anuchit Jitpattanakul. Deep Convolutional

Neural Network with RNNs for Complex Activity Recognition Using Wrist-

Worn Wearable Sensor Data. Electronics, 10(14):1685, July 2021. ISSN

99

https://ieeexplore.ieee.org/document/9343922/
https://ieeexplore.ieee.org/document/9343922/
http://arxiv.org/abs/2101.10870
https://ieeexplore.ieee.org/document/9372813/
https://ieeexplore.ieee.org/document/9296308/
https://ieeexplore.ieee.org/document/9249433/
https://ieeexplore.ieee.org/document/9249433/

2079-9292. doi: 10/gmd9fg. URL https://www.mdpi.com/2079-9292/10/

14/1685.

[71] Bolu Oluwalade, Sunil Neela, Judy Wawira, Tobiloba Adejumo, and Sap-

tarshi Purkayastha. Human activity recognition using deep learning mod-

els on smartphones and smartwatches sensor data. In Proceedings of the

14th International Joint Conference on Biomedical Engineering Systems and

Technologies - HEALTHINF,, pages 645–650. INSTICC, SciTePress, 2021.

ISBN 978-989-758-490-9. doi: 10.5220/0010325906450650.

[72] Gierad Laput, Chouchang Yang, Robert Xiao, Alanson Sample, and Chris

Harrison. EM-Sense: Touch Recognition of Uninstrumented, Electrical

and Electromechanical Objects. In Proceedings of the 28th Annual ACM

Symposium on User Interface Software & Technology, pages 157–166, Char-

lotte NC USA, November 2015. ACM. ISBN 978-1-4503-3779-3. doi:

10/gmc67p. URL https://dl.acm.org/doi/10.1145/2807442.2807481.

[73] Gierad Laput, Robert Xiao, and Chris Harrison. ViBand: High-Fidelity

Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers. In

Proceedings of the 29th Annual Symposium on User Interface Software and

Technology, pages 321–333, Tokyo Japan, October 2016. ACM. ISBN 978-

1-4503-4189-9. doi: 10/gk75f5. URL https://dl.acm.org/doi/10.1145/

2984511.2984582.

[74] Gierad Laput and Chris Harrison. Sensing Fine-Grained Hand Activity

with Smartwatches. In Proceedings of the 2019 CHI Conference on Human

Factors in Computing Systems, pages 1–13, Glasgow Scotland Uk, May 2019.

ACM. ISBN 978-1-4503-5970-2. doi: 10/ggft3w. URL https://dl.acm.org/

doi/10.1145/3290605.3300568.

[75] Liang-Hong Wu, Liang-Chuan Wu, and Shou-Chi Chang. Explor-

100

https://www.mdpi.com/2079-9292/10/14/1685
https://www.mdpi.com/2079-9292/10/14/1685
https://dl.acm.org/doi/10.1145/2807442.2807481
https://dl.acm.org/doi/10.1145/2984511.2984582
https://dl.acm.org/doi/10.1145/2984511.2984582
https://dl.acm.org/doi/10.1145/3290605.3300568
https://dl.acm.org/doi/10.1145/3290605.3300568

ing consumers’ intention to accept smartwatch. Computers in Human

Behavior, 64:383–392, November 2016. ISSN 07475632. doi: 10.1016/

j.chb.2016.07.005. URL https://linkinghub.elsevier.com/retrieve/

pii/S0747563216304940.

[76] Sensor stack. https://source.android.com/devices/sensors/sensor-

stack. Accessed: 2021-04-01.

[77] kernel-msm - Motorola Android Linux Kernel source repository. https:

//github.com/MotorolaMobilityLLC/kernel-msm. Accessed: 2021-03-25.

[78] Ziwei Zhu. Real-time gesture recognition demo with Android

Wear device (moto360)[Software]. https://github.com/Zziwei/

AndroidWear_Gesture_Recognition. Accessed: 2021-05-20.

[79] Gary M. Weiss, Kenichi Yoneda, and Thaier Hayajneh. Smartphone and

Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access,

7:133190–133202, 2019. ISSN 2169-3536. doi: 10/gmd86p. URL https:

//ieeexplore.ieee.org/document/8835065/.

[80] Yonatan Vaizman, Nadir Weibel, and Gert Lanckriet. Context Recogni-

tion In-the-Wild: Unified Model for Multi-Modal Sensors and Multi-Label

Classification. Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies, 1(4):1–22, January 2018. ISSN 2474-9567. doi:

10/gmhnw8. URL https://dl.acm.org/doi/10.1145/3161192.

[81] Zhendong Zhuang and Yang Xue. Sport-Related Human Activity Detection

and Recognition Using a Smartwatch. Sensors, 19(22):5001, November 2019.

ISSN 1424-8220. doi: 10/ggdg4m. URL https://www.mdpi.com/1424-8220/

19/22/5001.

[82] James W Cooley and John W Tukey. An algorithm for the machine calcula-

101

https://linkinghub.elsevier.com/retrieve/pii/S0747563216304940
https://linkinghub.elsevier.com/retrieve/pii/S0747563216304940
https://source.android.com/devices/sensors/sensor-stack
https://source.android.com/devices/sensors/sensor-stack
https://github.com/MotorolaMobilityLLC/kernel-msm
https://github.com/MotorolaMobilityLLC/kernel-msm
https://github.com/Zziwei/AndroidWear_Gesture_Recognition
https://github.com/Zziwei/AndroidWear_Gesture_Recognition
https://ieeexplore.ieee.org/document/8835065/
https://ieeexplore.ieee.org/document/8835065/
https://dl.acm.org/doi/10.1145/3161192
https://www.mdpi.com/1424-8220/19/22/5001
https://www.mdpi.com/1424-8220/19/22/5001

tion of complex fourier series. Mathematics of computation, 19(90):297–301,

1965.

[83] Dennis Gabor. Theory of communication. part 1: The analysis of informa-

tion. Journal of the Institution of Electrical Engineers-Part III: Radio and

Communication Engineering, 93(26):429–441, 1946.

[84] Jonathan Allen. Short term spectral analysis, synthesis, and modification

by discrete fourier transform. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 25(3):235–238, 1977.

[85] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard

Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recog-

nition with a back-propagation network. Advances in neural information

processing systems, 2, 1989.

[86] F. Mamalet and Christophe Garcia. Simplifying convnets for fast learning.

In ICANN, 2012.

[87] Francois Chollet. Xception: Deep Learning with Depthwise Separa-

ble Convolutions. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1800–1807, Honolulu, HI, July 2017.

IEEE. ISBN 978-1-5386-0457-1. doi: 10/gfxgtm. URL http://

ieeexplore.ieee.org/document/8099678/.

[88] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-

ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-

junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,

102

http://ieeexplore.ieee.org/document/8099678/
http://ieeexplore.ieee.org/document/8099678/

Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from tensorflow.org.

[89] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,

high-performance deep learning library. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems 32, pages 8024–8035. Curran Asso-

ciates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-

an-imperative-style-high-performance-deep-learning-library.pdf.

[90] François Chollet et al. Keras. https://keras.io, 2015.

[91] Awni Hannun, Ann Lee, Qiantong Xu, and Ronan Collobert. Sequence-

to-Sequence Speech Recognition with Time-Depth Separable Convolutions.

In Interspeech 2019, pages 3785–3789. ISCA, September 2019. doi: 10/

gj9trd. URL http://www.isca-speech.org/archive/Interspeech_2019/

abstracts/2460.html.

[92] Claude Elwood Shannon. Communication in the presence of noise.

Proceedings of the IRE, 37(1):10–21, 1949.

[93] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary,

Boris Ginsburg, Samuel Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack

Cook, et al. Nemo: a toolkit for building ai applications using neural modules.

arXiv preprint arXiv:1909.09577, 2019.

103

https://www.tensorflow.org/
https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://keras.io
http://www.isca-speech.org/archive/Interspeech_2019/abstracts/2460.html
http://www.isca-speech.org/archive/Interspeech_2019/abstracts/2460.html

[94] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev,

Jonathan M. Cohen, Huyen Nguyen, and Ravi Teja Gadde. Jasper: An End-

to-End Convolutional Neural Acoustic Model. In Interspeech 2019, pages

71–75. ISCA, September 2019. doi: 10/gj765j. URL http://www.isca-

speech.org/archive/Interspeech_2019/abstracts/1819.html.

[95] Min-Cheol Kwon, Hanjong You, Jeongung Kim, and Sunwoong Choi. Clas-

sification of Various Daily Activities using Convolution Neural Network and

Smartwatch. In 2018 IEEE International Conference on Big Data (Big

Data), pages 4948–4951, Seattle, WA, USA, December 2018. IEEE. ISBN

978-1-5386-5035-6. doi: 10/gj2q6w. URL https://ieeexplore.ieee.org/

document/8621893/.

[96] Kenichi Yoneda and Gary M. Weiss. Mobile sensor-based biometrics using

common daily activities. In 2017 IEEE 8th Annual Ubiquitous Computing,

Electronics and Mobile Communication Conference (UEMCON), pages 584–

590, New York, NY, October 2017. IEEE. ISBN 978-1-5386-1104-3. doi:

10/gmd86q. URL http://ieeexplore.ieee.org/document/8249001/.

[97] Isibor Kennedy Ihianle, Augustine O. Nwajana, Solomon Henry Ebenuwa,

Richard I. Otuka, Kayode Owa, and Mobolaji O. Orisatoki. A Deep Learning

Approach for Human Activities Recognition From Multimodal Sensing De-

vices. IEEE Access, 8:179028–179038, 2020. ISSN 2169-3536. doi: 10/gmd86s.

URL https://ieeexplore.ieee.org/document/9209961/.

[98] Maria Cornacchia, Koray Ozcan, Yu Zheng, and Senem Velipasalar. A Sur-

vey on Activity Detection and Classification Using Wearable Sensors. IEEE

Sensors Journal, 17(2):386–403, January 2017. ISSN 1530-437X, 1558-1748,

2379-9153. doi: 10/ggsp5b. URL http://ieeexplore.ieee.org/document/

7742959/.

104

http://www.isca-speech.org/archive/Interspeech_2019/abstracts/1819.html
http://www.isca-speech.org/archive/Interspeech_2019/abstracts/1819.html
https://ieeexplore.ieee.org/document/8621893/
https://ieeexplore.ieee.org/document/8621893/
http://ieeexplore.ieee.org/document/8249001/
https://ieeexplore.ieee.org/document/9209961/
http://ieeexplore.ieee.org/document/7742959/
http://ieeexplore.ieee.org/document/7742959/

[99] Md Atiqur Rahman Ahad, Anindya Das Antar, and Masud Ahmed. Sensor-

Based Benchmark Datasets: Comparison and Analysis. In IoT Sensor-Based

Activity Recognition, volume 173, pages 95–121. Springer International Pub-

lishing, Cham, 2021. ISBN 978-3-030-51378-8 978-3-030-51379-5. doi:

10.1007/978-3-030-51379-5_6. URL http://link.springer.com/10.1007/

978-3-030-51379-5_6. Series Title: Intelligent Systems Reference Library.

[100] Windows Interactive Logon Architecture. https://docs.microsoft.com/

en-us/previous-versions/windows/it-pro/windows-server-2008-

R2-and-2008/ff404303(v=ws.10)?redirectedfrom=MSDN, . Accessed:

2021-07-25.

[101] Windows Authentication Overview. https://docs.microsoft.com/

en-us/windows-server/security/windows-authentication/windows-

authentication-overview, . Accessed: 2021-07-25.

[102] Albrecht Schmidt. Don’t blame the user: toward means for usable and

practical authentication. Interactions, 26(3):73–75, April 2019. ISSN 1072-

5520, 1558-3449. doi: 10/gmg8bn. URL https://dl.acm.org/doi/10.1145/

3320509.

[103] Dan Griffin. Create Custom Login Experiences with Credential Providers

for Windows Vista. https://docs.microsoft.com/en-us/archive/msdn-

magazine/2007/january/custom-login-experiences-credential-

providers-in-windows-vista. Accessed: 2021-07-25.

[104] Authentication Packages. https://docs.microsoft.com/en-us/

windows/win32/secauthn/authentication-packages. Accessed: 2021-07-

25.

[105] Credentials Processes in Windows Authentication. https:

//docs.microsoft.com/en-us/previous-versions/windows/

105

http://link.springer.com/10.1007/978-3-030-51379-5_6
http://link.springer.com/10.1007/978-3-030-51379-5_6
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ff404303(v=ws.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ff404303(v=ws.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ff404303(v=ws.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows-server/security/windows-authentication/windows-authentication-overview
https://docs.microsoft.com/en-us/windows-server/security/windows-authentication/windows-authentication-overview
https://docs.microsoft.com/en-us/windows-server/security/windows-authentication/windows-authentication-overview
https://dl.acm.org/doi/10.1145/3320509
https://dl.acm.org/doi/10.1145/3320509
https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/january/custom-login-experiences-credential-providers-in-windows-vista
https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/january/custom-login-experiences-credential-providers-in-windows-vista
https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/january/custom-login-experiences-credential-providers-in-windows-vista
https://docs.microsoft.com/en-us/windows/win32/secauthn/authentication-packages
https://docs.microsoft.com/en-us/windows/win32/secauthn/authentication-packages
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN

it-pro/windows-server-2012-R2-and-2012/dn751047(v=

ws.11)?redirectedfrom=MSDN. Accessed: 2021-07-25.

[106] Brian Ward. How Linux Works, 3rd Edition. No Starch Press, 2021. ISBN

978-1-71850-040-2. OCLC: 1242946803.

[107] Vipin Samar. UNIFIED LOGIN WITH PLUGGABLE AUTHENTICA-

TION MODULES (PAM). http://www.opengroup.org/rfc/rfc86.0.html.

Accessed: 2021-07-25.

[108] Vipin Samar. Unified Login with Pluggable Authentication Modules

(PAM). In Proceedings of the 3rd ACM Conference on Computer and

Communications Security, CCS ’96, page 1–10, New York, NY, USA, 1996.

Association for Computing Machinery. ISBN 0897918290. doi: 10.1145/

238168.238177. URL https://doi.org/10.1145/238168.238177.

[109] Introduction to the PAM Framework. https://docs.oracle.com/cd/

E19120-01/open.solaris/819-2145/pam-01/index.html, . Accessed: 2021-

07-25.

[110] Pluggable Authentication Modules (PAM). https://web.mit.edu/rhel-

doc/4/RH-DOCS/rhel-rg-en-4/ch-pam.html. Accessed: 2021-07-25.

[111] Introduction to the PAM framework. https://docs.oracle.com/cd/

E19656-01/820-0386/aaqds/index.html, . Accessed: 2021-07-25.

[112] ICredentialProvider interface (credentialprovider.h). https://

docs.microsoft.com/en-us/windows/win32/api/credentialprovider/

nn-credentialprovider-icredentialprovider, . Accessed: 2021-07-25.

[113] ICredentialProviderCredential interface (credentialprovider.h). https://

docs.microsoft.com/en-us/windows/win32/api/credentialprovider/

106

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v=ws.11)?redirectedfrom=MSDN
http://www.opengroup.org/rfc/rfc86.0.html
https://doi.org/10.1145/238168.238177
https://docs.oracle.com/cd/E19120-01/open.solaris/819-2145/pam-01/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/819-2145/pam-01/index.html
https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/ch-pam.html
https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-en-4/ch-pam.html
https://docs.oracle.com/cd/E19656-01/820-0386/aaqds/index.html
https://docs.oracle.com/cd/E19656-01/820-0386/aaqds/index.html
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovider
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovider
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovider
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential

nn-credentialprovider-icredentialprovidercredential, . Accessed:

2021-07-25.

[114] ICredentialProviderCredentialEvents2 interface (credential-

provider.h). https://docs.microsoft.com/en-us/windows/

win32/api/credentialprovider/nn-credentialprovider-

icredentialprovidercredentialevents2. Accessed: 2021-08-01.

[115] Russell Stuart. pam_python - a PAM module runs Python interpreter

[Software]. http://pam-python.sourceforge.net/doc/html/. Accessed:

2021-07-25.

[116] Extensions. https://developer.chrome.com/docs/extensions/, . Ac-

cessed: 2021-07-25.

[117] Node.js - a javascript runtime built on chrome’s v8 javascript en-

gine.[Software]. https://nodejs.org/en/. Accessed: 2021-07-25.

[118] Express - Fast, unopinionated, minimalist web framework for

Node.js.[Software]. https://expressjs.com/. Accessed: 2021-07-25.

[119] Mongoose - Elegant MongoDB object modeling for node.js.[Software].

https://mongoosejs.com/. Accessed: 2021-07-25.

[120] CORS - a node.js package for providing a Connect/Express middle-

ware.[Software]. https://github.com/expressjs/cors/, . Accessed: 2021-

07-25.

[121] Cross-Origin Resource Sharing (cors). https://developer.mozilla.org/

en-US/docs/Web/HTTP/CORS/, . Accessed: 2021-07-25.

[122] CryptoJS - JavaScript implementations of standard and secure crypto-

graphic algorithms.[Software]. https://cryptojs.gitbook.io/docs/. Ac-

cessed: 2021-07-25.

107

https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential
https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential
 https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialevents2
 https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialevents2
 https://docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredentialevents2
http://pam-python.sourceforge.net/doc/html/
https://developer.chrome.com/docs/extensions/
https://nodejs.org/en/
https://expressjs.com/
https://mongoosejs.com/
https://github.com/expressjs/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/
https://cryptojs.gitbook.io/docs/

[123] jsonwebtoken - An implementation of JSON Web Tokens.[Software].

https://github.com/auth0/node-jsonwebtoken/. Accessed: 2021-07-25.

[124] Mike Jones. JSON Web Token (JWT). https://datatracker.ietf.org/

doc/html/rfc7519/. Accessed: 2021-07-25.

[125] systemd -a suite of basic building blocks for a Linux system [Software].

https://systemd.io/. Accessed: 2021-08-01.

[126] NSSM - the Non-Sucking Service Manager [Software]. https://nssm.cc/.

Accessed: 2021-8-01.

[127] Tuan-Duy H Nguyen, Huu-Nghia H Nguyen, and Hieu Dao. Recogniz-

ing families through images with pretrained encoder. In 2020 15th IEEE

International Conference on Automatic Face and Gesture Recognition (FG

2020), pages 887–891. IEEE, 2020. doi: 10.1109/FG47880.2020.00130.

[128] Thuc Nguyen-Quang, Tuan-Duy H Nguyen, Thang-Long Nguyen-Ho, Anh-

Kiet Duong, Nhat Hoang-Xuan, Vinh-Thuyen Nguyen-Truong, Hai-Dang

Nguyen, and Minh-Triet Tran. Hcmus at mediaeval 2020: Image-text fusion

for automatic news-images re-matching. In MediaEval 2020: Multimedia

Benchmark Workshop 2020, 2020. URL http://ceur-ws.org/Vol-2882/

paper73.pdf.

[129] Andrea Raffo, Ulderico Fugacci, Silvia Biasotti, Walter Rocchia,

Yonghuai Liu, Ekpo Otu, Reyer Zwiggelaar, David Hunter, Evangelia I.

Zacharaki, Eleftheria Psatha, Dimitrios Laskos, Gerasimos Arvanitis, Kon-

stantinos Moustakas, Tunde Aderinwale, Charles Christoffer, Woong-

Hee Shin, Daisuke Kihara, Andrea Giachetti, Huu-Nghia Nguyen, Tuan-

Duy Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le-Thanh, Hai-Dang

Nguyen, and Minh-Triet Tran. Shrec 2021: Retrieval and classifica-

tion of protein surfaces equipped with physical and chemical properties.

108

https://github.com/auth0/node-jsonwebtoken/
https://datatracker.ietf.org/doc/html/rfc7519/
https://datatracker.ietf.org/doc/html/rfc7519/
https://systemd.io/
https://nssm.cc/
http://ceur-ws.org/Vol-2882/paper73.pdf
http://ceur-ws.org/Vol-2882/paper73.pdf

Computers Graphics, 99:1–21, 2021. ISSN 0097-8493. doi: https://

doi.org/10.1016/j.cag.2021.06.010. URL https://www.sciencedirect.com/

science/article/pii/S0097849321001254.

109

https://www.sciencedirect.com/science/article/pii/S0097849321001254
https://www.sciencedirect.com/science/article/pii/S0097849321001254

LIST OF PUBLICATIONS

Prior works in smart environments are published in the following articles:

[1] Tuan-Duy H. Nguyen and Huu-Nghia H. Nguyen. Towards a ro-

bust wifi-based fall detection with adversarial data augmentation. In 2020

54th Annual Conference on Information Sciences and Systems(CISS),

pages 1–6, 2020. doi: 10.1109/CISS48834.2020.1570617398

Other works in information retrieval using representation learning

are published in the following articles:

[2] Tuan-Duy H Nguyen, Huu-Nghia H Nguyen, and Hieu Dao. Recogniz-

ing families through images with pretrained encoder. In 2020 15th IEEE

International Conference on Automatic Face and Gesture Recognition

(FG2020), pages 887–891. IEEE, 2020. doi: 10.1109/FG47880.2020.00130.

[3] Thuc Nguyen-Quang, Tuan-Duy H Nguyen, Thang-Long Nguyen-Ho,

Anh-Kiet Duong, Nhat Hoang-Xuan, Vinh-Thuyen Nguyen-Truong,

Hai-DangNguyen, and Minh-Triet Tran. Hcmus at mediaeval 2020: Image-

text fusion for automatic news-images re-matching. In MediaEval2020:

Multimedia Benchmark Workshop 2020, 2020. URL http://ceur-

ws.org/Vol-2882/paper73.pdf.

[4] Andrea Raffo, Ulderico Fugacci, Silvia Biasotti, Walter Roc-

chia,Yonghuai Liu, Ekpo Otu, Reyer Zwiggelaar, David Hunter,

Evangelia I.Zacharaki, Eleftheria Psatha, Dimitrios Laskos, Gerasi-

mos Arvanitis, Kon-stantinos Moustakas, Tunde Aderinwale, Charles

Christoffer, Woong-Hee Shin, Daisuke Kihara, Andrea Giachetti,

Huu-Nghia Nguyen, Tuan-Duy Nguyen, Vinh-Thuyen Nguyen-Truong,

Danh Le-Thanh, Hai-Dang Nguyen, and Minh-Triet Tran. Shrec 2021:

Retrieval and classifica-tion of protein surfaces equipped with phys-

ical and chemical properties. Computers Graphics, 99:1–21, 2021.

ISSN 0097-8493. doi: https://doi.org/10.1016/j.cag.2021.06.010. URL

https://www.sciencedirect.com/science/article/pii/S0097849321001254

111

	Front Matter
	Acknowledgement
	Thesis Syllabus
	Table of Contents
	List of Tables
	List of Figures
	Abstract

	Main Chapters
	1 Introduction
	1.1 Smart Environments
	1.2 Human-Computer Interaction with Ubiquitous Sensing and Wearable Technology
	1.3 Motivation
	1.4 Objective
	1.5 Outline

	2 Feature Enhancement for Smart Android Devices with Inertial Sensors
	2.1 Hardware and Firmware Interference
	2.2 Signal Collecting

	3 Inertial Signal Sequence Understanding for Smart Interaction
	3.1 Signal Processing
	3.2 Learning-based Signal Processing
	3.3 Implementation Details
	3.4 Numerical Benchmarks

	4 Smart Interaction Platform with Smart Watch
	4.1 Authentication On Common Computer Platforms
	4.2 Authentication System Design and Implementation

	5 Conclusion
	5.1 Main results
	5.2 Samples of Usage Scenarios
	5.3 Future Work

	References
	List of Publications

